APPLY DATA CLUSTERING TO GENE EXPRESSION DATA
Data clustering plays an important role in effective analysis of gene expression. Although DNA microarray technology facilitates expression monitoring, several challenges arise when dealing with gene expression datasets. Some of these challenges are the enormous number of genes, the dimensionality o...
Main Author: | |
---|---|
Format: | Others |
Published: |
CSUSB ScholarWorks
2015
|
Subjects: | |
Online Access: | https://scholarworks.lib.csusb.edu/etd/259 https://scholarworks.lib.csusb.edu/cgi/viewcontent.cgi?article=1293&context=etd |
id |
ndltd-csusb.edu-oai-scholarworks.lib.csusb.edu-etd-1293 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-csusb.edu-oai-scholarworks.lib.csusb.edu-etd-12932019-10-23T03:35:58Z APPLY DATA CLUSTERING TO GENE EXPRESSION DATA Abualhamayl, Abdullah Jameel, Mr. Data clustering plays an important role in effective analysis of gene expression. Although DNA microarray technology facilitates expression monitoring, several challenges arise when dealing with gene expression datasets. Some of these challenges are the enormous number of genes, the dimensionality of the data, and the change of data over time. The genetic groups which are biologically interlinked can be identified through clustering. This project aims to clarify the steps to apply clustering analysis of genes involved in a published dataset. The methodology for this project includes the selection of the dataset representation, the selection of gene datasets, Similarity Matrix Selection, the selection of clustering algorithm, and analysis tool. R language with the focus of Kmeans, fpc, hclust, and heatmap3 packages in R is used in this project as an analysis tool. Different clustering algorithms are used on Spellman dataset to illustrate how genes are grouped together in clusters which help to understand our genetic behaviors. 2015-12-01T08:00:00Z text application/pdf https://scholarworks.lib.csusb.edu/etd/259 https://scholarworks.lib.csusb.edu/cgi/viewcontent.cgi?article=1293&context=etd Electronic Theses, Projects, and Dissertations CSUSB ScholarWorks Clustering Gene Dataset Expression Time Series R Language Analysis Bioinformatics Genetics |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
Clustering Gene Dataset Expression Time Series R Language Analysis Bioinformatics Genetics |
spellingShingle |
Clustering Gene Dataset Expression Time Series R Language Analysis Bioinformatics Genetics Abualhamayl, Abdullah Jameel, Mr. APPLY DATA CLUSTERING TO GENE EXPRESSION DATA |
description |
Data clustering plays an important role in effective analysis of gene expression. Although DNA microarray technology facilitates expression monitoring, several challenges arise when dealing with gene expression datasets. Some of these challenges are the enormous number of genes, the dimensionality of the data, and the change of data over time. The genetic groups which are biologically interlinked can be identified through clustering. This project aims to clarify the steps to apply clustering analysis of genes involved in a published dataset. The methodology for this project includes the selection of the dataset representation, the selection of gene datasets, Similarity Matrix Selection, the selection of clustering algorithm, and analysis tool. R language with the focus of Kmeans, fpc, hclust, and heatmap3 packages in R is used in this project as an analysis tool. Different clustering algorithms are used on Spellman dataset to illustrate how genes are grouped together in clusters which help to understand our genetic behaviors. |
author |
Abualhamayl, Abdullah Jameel, Mr. |
author_facet |
Abualhamayl, Abdullah Jameel, Mr. |
author_sort |
Abualhamayl, Abdullah Jameel, Mr. |
title |
APPLY DATA CLUSTERING TO GENE EXPRESSION DATA |
title_short |
APPLY DATA CLUSTERING TO GENE EXPRESSION DATA |
title_full |
APPLY DATA CLUSTERING TO GENE EXPRESSION DATA |
title_fullStr |
APPLY DATA CLUSTERING TO GENE EXPRESSION DATA |
title_full_unstemmed |
APPLY DATA CLUSTERING TO GENE EXPRESSION DATA |
title_sort |
apply data clustering to gene expression data |
publisher |
CSUSB ScholarWorks |
publishDate |
2015 |
url |
https://scholarworks.lib.csusb.edu/etd/259 https://scholarworks.lib.csusb.edu/cgi/viewcontent.cgi?article=1293&context=etd |
work_keys_str_mv |
AT abualhamaylabdullahjameelmr applydataclusteringtogeneexpressiondata |
_version_ |
1719275645558587392 |