Summary: | This dissertation describes methods developed for analysis of the New York City energy system. The analysis specifically aims to consider the built environment and its' impacts on greenhouse gas (GHG) emissions. Several contributions to the urban energy systems literature were made. First, estimates of annual energy intensities of the New York building stock were derived using a statistical analysis that leveraged energy consumption and tax assessor data collected by the Office of the Mayor. These estimates provided the basis for an assessment of the spatial distribution of building energy consumption. The energy consumption estimates were then leveraged to estimate the potential for combined heat and power (CHP) systems in New York City at both the building and microgrid scales. In aggregate, given the 2009 non-baseload GHG emissions factors for electricity production, these systems could reduce citywide GHG emissions by 10%. The operational characteristics of CHP systems were explored further considering different prime movers, climates, and GHG emissions factors. A combination of mixed integer linear programing and controlled random search algorithms were the methods used to determine the optimal capacity and operating strategies for the CHP systems under the various scenarios. Lastly a multi-regional unit commitment model of electricity and GHG emissions production for New York State was developed using data collected from several publicly available sources. The model was used to estimate average and marginal GHG emissions factors for New York State and New York City. The analysis found that marginal GHG emissions factors could reduce by 30% to 370 g CO₂e/kWh in the next 10 years.
|