Summary: | This thesis studies electronic properties of molecular devices in the limiting cases of strong and weak electrode-molecule coupling. In these two limits, we use the complementary techniques of X-Ray spectroscopy and Scanning Tunneling Microscopy (STM) to understand the mechanisms for electrode-molecule bond formation, the energy level realignment due to metal-molecule bonds, the effect of coupling strength on single-molecule conductance in low-bias measurements, and the effect of coupling on transport under high-bias. We also introduce molecular designs with inherent asymmetries, and develop an analytical method to determine the effect of these features on high-bias conductance. This understanding of the role of electrode-molecule coupling in high-bias regimes enables us to develop a series of functional electronic devices whose properties can be predictably tuned through chemical design.
First, we explore the weak electrode-molecule coupling regime by studing the interaction of two types of paracyclophane derivates that are coupled `through-space' to underlying gold substrates. The two paracyclophane derivatives differ in the strength of their intramolecular through-space coupling. X-Ray photoemission spectroscopy (XPS) and Near-Edge X-ray Absorbance Fine Structure (NEXAFS) spectroscopy allows us to determine the orientation of both molecules; Resonant Photoemission Spectroscopy (RPES) then allows us to measure charge transfer time from molecule to metal for both molecules. This study provides a quantititative measure of charge transfer time as a function of through-space coupling strength. Next we use this understanding in STM based single-molecule current-voltage measurements of a series of molecules that couple through-space to one electrode, and through-bond to the other. We find that in the high-bias regime, these molecules respond differently depending on the direction of the applied field. This asymmetric response to electric field direction results in diode-like behavior. We vary the length of these asymmetrically coupled molecules, and find that we can increase the rectifying characteristics of these molecules by increasing length.
Next, we explore the strong-coupling regime with an X-Ray spectroscopy study of the formation of covalent gold-carbon bonds using benzyltrimethyltin molecules on gold surfaces in ultra high vacuum conditions. Through X-ray Photoemission Spectroscopy (XPS) and X-ray absorption measurements, we find that the molecule fragments at the Sn-Benzyl bond when exposed to gold and the resulting benzyl species only forms covalent Au-C bonds on less coordinated Au surfaces like Au(110). We also find spectroscopic evidence for a gap state localized on the Au-C bond that results from the covalent nature of the bond. Finally, we use Density Functional Theory based Nudged Elastic Band methods to find reaction pathways and energy barriers for this reaction.
We use our knowledge of the electronic structure of these bonds to create single-molecule junctions containing Au-C bonds in STM-based break junction experiments. In analogy with our approach for the weakly coupled `through-space' systems, we study the high-bias current-voltage characteristics of molecules with one strong Au-C bond, and one weaker donor-acceptor bond. These experiments reveal that the `gap state' created due to the covalent nature of the Au-C bond remains essentially pinned to the Fermi level of its corresponding electrode, and that most of the electric potential drop in the junction occurs on the donor-acceptor bond; as a result, these molecules behave like rectifiers. We use this principle to create a series of three molecular rectifiers, and show that the unique properties of the Au-C bond allow us to easily tune the rectification ratio by modifying a single electronic parameter.
We then explore the process of molecular self-assembly to create organic electronic structures on metal surfaces. Specifically, we study the formation of graphene nanoribbons using a brominated precursor deposited on Au(111) surface in ultra high vacuum. We find that the halogen atoms cleave from the precursors at surprisingly low temperatures of <100C, and find that the resulting radicals bind to Au, forming Au-C and Au-Br bonds. We show that the Br desorbs at relatively low temperatures of <250C, and that polymerization of the precursor molecules to form nanoribbons proceeds only after the debrominization of the surface. Finally, with Angle-Resolved Photoemission and Density Functional Theory calculations, we quantify the interaction strength of the resulting nanoribbons with the underlying gold substrate.
Taken together, the results presented in this thesis offer a mechanistic understanding of the formation of electrode-molecule bonds, and also an insight into the high-bias behavior of molecular junctions as a function of electrode-molecule coupling. In addition, our work in developing tunable, functional electronic devices serves as a framework for future technological advances towards molecule-based computation.
|