Two Essays in Financial Engineering
This dissertation consists of two parts. In the first part, we investigate the potential impact of wrong-way risk on calculating credit valuation adjustment (CVA) of a derivatives portfolio. A credit valuation adjustment (CVA) is an adjustment applied to the value of a derivative contract or a portf...
Main Author: | |
---|---|
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://doi.org/10.7916/D8K35T1M |
id |
ndltd-columbia.edu-oai-academiccommons.columbia.edu-10.7916-D8K35T1M |
---|---|
record_format |
oai_dc |
spelling |
ndltd-columbia.edu-oai-academiccommons.columbia.edu-10.7916-D8K35T1M2019-05-09T15:14:55ZTwo Essays in Financial EngineeringYang, Linan2015ThesesOperations researchFinanceThis dissertation consists of two parts. In the first part, we investigate the potential impact of wrong-way risk on calculating credit valuation adjustment (CVA) of a derivatives portfolio. A credit valuation adjustment (CVA) is an adjustment applied to the value of a derivative contract or a portfolio of derivatives to account for counterparty credit risk. Measuring CVA requires combining models of market and credit risk. Wrong-way risk refers to the possibility that a counterparty's likelihood of default increases with the market value of the exposure. We develop a method for bounding wrong-way risk, holding fixed marginal models for market and credit risk and varying the dependence between them. Given simulated paths of the two models, we solve a linear program to find the worst-case CVA resulting from wrong-way risk. We analyze properties of the solution and prove convergence of the estimated bound as the number of paths increases. The worst case can be overly pessimistic, so we extend the procedure for a tempered CVA by penalizing the deviation of the joint model of market and credit risk from a reference model. By varying the penalty for deviations, we can sweep out the full range of possible CVA values for different degrees of wrong-way risk. Here, too, we prove convergence of the estimate of the tempered CVA and the joint distribution that attains it. Our method addresses an important source of model risk in counterparty risk measurement. In the second part, we study investors' trading behavior in a model of realization utility. We assume that investors' trading decisions are driven not only by the utility of consumption and terminal wealth, but also by the utility burst from realizing a gain or a loss. More precisely, we consider a dynamic trading problem in which an investor decides when to purchase and sell a stock to maximize her wealth utility and realization utility with her reference points adapting to the stock's gain and loss asymmetrically. We study, both theoretically and numerically, the optimal trading strategies and asset pricing implications of two types of agents: adaptive agents, who realize prospectively the reference point adaptation in the future, and naive agents, who fail to do so. We find that an adaptive agent sells the stock more frequently when the stock is at a gain than a naive agent does, and that the adaptive agent asks for a higher risk premium for the stock than the naive agent does in equilibrium. Moreover, compared to a non-adaptive agent whose reference point does not change with the stock's gain and loss, both the adaptive and naive agents sell the stock less frequently, and the naive agent requires the same risk premium as the non-adaptive agent does.Englishhttps://doi.org/10.7916/D8K35T1M |
collection |
NDLTD |
language |
English |
sources |
NDLTD |
topic |
Operations research Finance |
spellingShingle |
Operations research Finance Yang, Linan Two Essays in Financial Engineering |
description |
This dissertation consists of two parts. In the first part, we investigate the potential impact of wrong-way risk on calculating credit valuation adjustment (CVA) of a derivatives portfolio. A credit valuation adjustment (CVA) is an adjustment applied to the value of a derivative contract or a portfolio of derivatives to account for counterparty credit risk. Measuring CVA requires combining models of market and credit risk. Wrong-way risk refers to the possibility that a counterparty's likelihood of default increases with the market value of the exposure. We develop a method for bounding wrong-way risk, holding fixed marginal models for market and credit risk and varying the dependence between them. Given simulated paths of the two models, we solve a linear program to find the worst-case CVA resulting from wrong-way risk. We analyze properties of the solution and prove convergence of the estimated bound as the number of paths increases. The worst case can be overly pessimistic, so we extend the procedure for a tempered CVA by penalizing the deviation of the joint model of market and credit risk from a reference model. By varying the penalty for deviations, we can sweep out the full range of possible CVA values for different degrees of wrong-way risk. Here, too, we prove convergence of the estimate of the tempered CVA and the joint distribution that attains it. Our method addresses an important source of model risk in counterparty risk measurement. In the second part, we study investors' trading behavior in a model of realization utility. We assume that investors' trading decisions are driven not only by the utility of consumption and terminal wealth, but also by the utility burst from realizing a gain or a loss. More precisely, we consider a dynamic trading problem in which an investor decides when to purchase and sell a stock to maximize her wealth utility and realization utility with her reference points adapting to the stock's gain and loss asymmetrically. We study, both theoretically and numerically, the optimal trading strategies and asset pricing implications of two types of agents: adaptive agents, who realize prospectively the reference point adaptation in the future, and naive agents, who fail to do so. We find that an adaptive agent sells the stock more frequently when the stock is at a gain than a naive agent does, and that the adaptive agent asks for a higher risk premium for the stock than the naive agent does in equilibrium. Moreover, compared to a non-adaptive agent whose reference point does not change with the stock's gain and loss, both the adaptive and naive agents sell the stock less frequently, and the naive agent requires the same risk premium as the non-adaptive agent does. |
author |
Yang, Linan |
author_facet |
Yang, Linan |
author_sort |
Yang, Linan |
title |
Two Essays in Financial Engineering |
title_short |
Two Essays in Financial Engineering |
title_full |
Two Essays in Financial Engineering |
title_fullStr |
Two Essays in Financial Engineering |
title_full_unstemmed |
Two Essays in Financial Engineering |
title_sort |
two essays in financial engineering |
publishDate |
2015 |
url |
https://doi.org/10.7916/D8K35T1M |
work_keys_str_mv |
AT yanglinan twoessaysinfinancialengineering |
_version_ |
1719046444183191552 |