Summary: | Anthropogenic greenhouse gas emissions (GHG) contribute to global warming, and must be mitigated. With GHG mitigation as an overarching goal, this research aims to study the potential for newfound and abundant sources of natural gas to play a role as part of a GHG mitigation strategy. However, recent work suggests that methane leakage in the current natural gas system may inhibit end-use natural gas as a robust mitigation strategy, but that natural gas as a feedstock for other forms of energy, such as electricity generation or liquid fuels, may support natural-gas based mitigation efforts.
Flaring of uneconomic natural gas, or outright loss of natural gas to the atmosphere results in greenhouse gas emissions that could be avoided and which today are very large in aggregate. A central part of this study is to look at a new technology for converting natural gas into methanol at a unit scale that is matched to the size of individual natural gas wells. The goal is to convert stranded or otherwise flared natural gas into a commercially valuable product and thereby avoid any unnecessary emission to the atmosphere.
A major part of this study is to contribute to the development of a novel approach for converting natural gas into methanol and to assess the environmental impact (for better or for worse) of this new technology. This Ph.D. research contributes to the development of such a system and provides a comprehensive techno-economic and environmental assessment of this technology.
Recognizing the distributed nature of methane leakage associated with the natural gas system, this work is also intended to advance previous research at the Lenfest Center for Sustainable Energy that aims to show that small, modular energy systems can be made economic. This thesis contributes to and analyzes the development of a small-scale gas-to-liquids (GTL) system aimed at addressing flared natural gas from gas and oil wells. This thesis includes system engineering around a design that converts natural gas to synthesis gas (syngas) in a reciprocating internal combustion engine and then converts the syngas into methanol in a small-scale reactor.
With methanol as the product, this research aims to show that such a system can not only address current and future natural gas flaring regulation, but eventually can compete economically with historically large-scale, centralized methanol production infrastructure. If successful, such systems could contribute to a shift away from large, multi-billion dollar capital cost chemical plants towards smaller systems with shorter lifetimes that may decrease the time to transition to more sustainable forms of energy and chemical conversion technologies.
This research also quantifies the potential for such a system to contribute to mitigating GHG emissions, not only by addressing flared gas in the near-term, but also supporting future natural gas infrastructure ideas that may help to redefine the way the current natural gas pipeline system is used. The introduction of new, small-scale, distributed energy and chemical conversion systems located closer to the point of extraction may contribute to reducing methane leakage throughout the natural gas distribution system by reducing the reliance and risks associated with the aging natural gas pipeline infrastructure.
The outcome of this thesis will result in several areas for future work. From an economic perspective, factors that contribute to overall system cost, such as operation and maintenance (O&M) and capital cost multiplier (referred to as the Lang Factor for large-scale petro-chemical plants), are not yet known for novel systems such as the technology presented here. From a technical perspective, commercialization of small-scale, distributed chemical conversion systems may create a demand for economical compression and air-separation technologies at this scale that do not currently exist. Further, new business cases may arise aimed at utilizing small, remote sources of methane, such as biogas from agricultural and municipal waste. Finally, while methanol was selected as the end-product for this thesis, future applications of this technology may consider methane conversion to hydrogen, ammonia, and ethylene for example, challenging the orthodoxy in the chemical industry that “bigger is better.”
|