Powering the Information Age: Metrics, Social Cost Optimization Strategies, and Indirect Effects Related to Data Center Energy Use
This dissertation contains three studies examining aspects of energy use by data centers and other information and communication technology (ICT) infrastructure necessary to support the electronic services that now form such a pervasive aspect of daily life. The energy consumption of ICT in general...
Main Author: | |
---|---|
Format: | Others |
Published: |
Research Showcase @ CMU
2016
|
Subjects: | |
Online Access: | http://repository.cmu.edu/dissertations/696 http://repository.cmu.edu/cgi/viewcontent.cgi?article=1735&context=dissertations |
Summary: | This dissertation contains three studies examining aspects of energy use by data centers and other information and communication technology (ICT) infrastructure necessary to support the electronic services that now form such a pervasive aspect of daily life. The energy consumption of ICT in general and data centers in particular has been of growing interest to both industry and the public, with continued calls for increased efficiency and greater focus on environmental impacts. The first study examines the metrics used to assess data center energy performance and finds that power usage effectiveness (PUE), the de facto industry standard, only accounts for one of four critical aspects of data center energy performance. PUE measures the overhead of the facility infrastructure but does not consider the efficiency of the IT equipment, its utilization, or the emissions profile of the power source. As a result, PUE corresponds poorly with energy and carbon efficiency, as demonstrated using a small set of empirical data center energy use measurements. The second study lays out a taxonomy of indirect energy impacts to help assess whether ICT’s direct energy consumption is offset by its energy benefits, and concludes that ICT likely has a large potential net energy benefit, but that there is no consensus on the sign or magnitude of actual savings, which are largely dependent upon implementation details. The third study estimates the potential of dynamic load shifting in a content distribution network to reduce both private costs and emissions-related externalities associated with electricity consumption. Utilizing variable marginal retail prices based on wholesale electricity markets and marginal damages estimated from emissions data in a cost-minimization model, the analysis finds that load shifting can either reduce data center power bills by approximately 25%–33% or avoid 30%–40% of public damages, while a range of joint cost minimization strategies enables simultaneous reduction of both private and public costs. The vast majority of these savings can be achieved even under existing bandwidth and network distance constraints, although current industry trends towards virtualization, energy efficiency, and green powermay make load shifting less appealing. |
---|