Representation, Planning, and Learning of Dynamic Ad Hoc Robot Teams

Forming an effective multi-robot team to perform a task is a key problem in many domains. The performance of a multi-robot team depends on the robots the team is composed of, where each robot has different capabilities. Team performance has previously been modeled as the sum of single-robot capabili...

Full description

Bibliographic Details
Main Author: Liemhetcharat, Somchaya
Format: Others
Published: Research Showcase @ CMU 2013
Subjects:
Online Access:http://repository.cmu.edu/dissertations/304
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1310&context=dissertations
id ndltd-cmu.edu-oai-repository.cmu.edu-dissertations-1310
record_format oai_dc
spelling ndltd-cmu.edu-oai-repository.cmu.edu-dissertations-13102014-07-24T15:36:16Z Representation, Planning, and Learning of Dynamic Ad Hoc Robot Teams Liemhetcharat, Somchaya Forming an effective multi-robot team to perform a task is a key problem in many domains. The performance of a multi-robot team depends on the robots the team is composed of, where each robot has different capabilities. Team performance has previously been modeled as the sum of single-robot capabilities, and these capabilities are assumed to be known. Is team performance just the sum of single-robot capabilities? This thesis is motivated by instances where agents perform differently depending on their teammates, i.e., there is synergy in the team. For example, in human sports teams, a well-trained team performs better than an allstars team composed of top players from around the world. This thesis introduces a novel model of team synergy — the Synergy Graph model — where the performance of a team depends on each robot’s individual capabilities and a task-based relationship among them. Robots are capable of learning to collaborate and improving team performance over time, and this thesis explores how such robots are represented in the Synergy Graph Model. This thesis contributes a novel algorithm that allocates training instances for the robots to improve, so as to form an effective multi-robot team. The goal of team formation is the optimal selection of a subset of robots to perform the task, and this thesis contributes team formation algorithms that use a Synergy Graph to form an effective multi-robot team with high performance. In particular, the performance of a team is modeled with a Normal distribution to represent the nondeterminism of the robots’ actions in a dynamic world, and this thesis introduces the concept of a δ-optimal team that trades off risk versus reward. Further, robots may fail from time to time, and this thesis considers the formation of a robust multi-robot team that attains high performance even if failures occur. This thesis considers ad hoc teams, where the robots of the team have not collaborated together, and so their capabilities and synergy are initially unknown. This thesis contributes a novel learning algorithm that uses observations of team performance to learn a Synergy Graph that models the capabilities and synergy of the team. Further, new robots may become available, and this thesis introduces an algorithm that iteratively updates a Synergy Graph with new robots. 2013-08-01T07:00:00Z text application/pdf http://repository.cmu.edu/dissertations/304 http://repository.cmu.edu/cgi/viewcontent.cgi?article=1310&context=dissertations Dissertations Research Showcase @ CMU Robotics
collection NDLTD
format Others
sources NDLTD
topic Robotics
spellingShingle Robotics
Liemhetcharat, Somchaya
Representation, Planning, and Learning of Dynamic Ad Hoc Robot Teams
description Forming an effective multi-robot team to perform a task is a key problem in many domains. The performance of a multi-robot team depends on the robots the team is composed of, where each robot has different capabilities. Team performance has previously been modeled as the sum of single-robot capabilities, and these capabilities are assumed to be known. Is team performance just the sum of single-robot capabilities? This thesis is motivated by instances where agents perform differently depending on their teammates, i.e., there is synergy in the team. For example, in human sports teams, a well-trained team performs better than an allstars team composed of top players from around the world. This thesis introduces a novel model of team synergy — the Synergy Graph model — where the performance of a team depends on each robot’s individual capabilities and a task-based relationship among them. Robots are capable of learning to collaborate and improving team performance over time, and this thesis explores how such robots are represented in the Synergy Graph Model. This thesis contributes a novel algorithm that allocates training instances for the robots to improve, so as to form an effective multi-robot team. The goal of team formation is the optimal selection of a subset of robots to perform the task, and this thesis contributes team formation algorithms that use a Synergy Graph to form an effective multi-robot team with high performance. In particular, the performance of a team is modeled with a Normal distribution to represent the nondeterminism of the robots’ actions in a dynamic world, and this thesis introduces the concept of a δ-optimal team that trades off risk versus reward. Further, robots may fail from time to time, and this thesis considers the formation of a robust multi-robot team that attains high performance even if failures occur. This thesis considers ad hoc teams, where the robots of the team have not collaborated together, and so their capabilities and synergy are initially unknown. This thesis contributes a novel learning algorithm that uses observations of team performance to learn a Synergy Graph that models the capabilities and synergy of the team. Further, new robots may become available, and this thesis introduces an algorithm that iteratively updates a Synergy Graph with new robots.
author Liemhetcharat, Somchaya
author_facet Liemhetcharat, Somchaya
author_sort Liemhetcharat, Somchaya
title Representation, Planning, and Learning of Dynamic Ad Hoc Robot Teams
title_short Representation, Planning, and Learning of Dynamic Ad Hoc Robot Teams
title_full Representation, Planning, and Learning of Dynamic Ad Hoc Robot Teams
title_fullStr Representation, Planning, and Learning of Dynamic Ad Hoc Robot Teams
title_full_unstemmed Representation, Planning, and Learning of Dynamic Ad Hoc Robot Teams
title_sort representation, planning, and learning of dynamic ad hoc robot teams
publisher Research Showcase @ CMU
publishDate 2013
url http://repository.cmu.edu/dissertations/304
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1310&context=dissertations
work_keys_str_mv AT liemhetcharatsomchaya representationplanningandlearningofdynamicadhocrobotteams
_version_ 1716709425783242752