Gray-Space Spectrum Sharing with Cellular Systems and Radars, and Policy Implications

This dissertation considers gray-space primary-secondary spectrum sharing, in which secondary devices are allowed to transmit when primary transmissions are strong enough that additional interference would be tolerable, rather than when the primary transmissions are weak or absent so the spectrum is...

Full description

Bibliographic Details
Main Author: Saruthirathanaworakun, Rathapon
Format: Others
Published: Research Showcase @ CMU 2012
Subjects:
Online Access:http://repository.cmu.edu/dissertations/198
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1197&context=dissertations
id ndltd-cmu.edu-oai-repository.cmu.edu-dissertations-1197
record_format oai_dc
spelling ndltd-cmu.edu-oai-repository.cmu.edu-dissertations-11972014-07-24T15:36:01Z Gray-Space Spectrum Sharing with Cellular Systems and Radars, and Policy Implications Saruthirathanaworakun, Rathapon This dissertation considers gray-space primary-secondary spectrum sharing, in which secondary devices are allowed to transmit when primary transmissions are strong enough that additional interference would be tolerable, rather than when the primary transmissions are weak or absent so the spectrum is considered unused, as occurs in white-space sharing. To avoid causing harmful interference (i.e., interference causing disruptions in services), transmit power of a secondary device is dynamically adjusted. Various novel sharing mechanisms are proposed for two different types of primary system: cellular systems, and rotating radars. Both cases when primary and secondary systems cooperate (cooperative sharing), and when they do not (coexistent sharing) are considered. Based on analyses and extensive Monte Carlo simulations, this dissertation shows that useful secondary transmissions are possible even when the shared spectrum is considered 100% utilized by the primary system under conventional approaches to spectrum management. For example, in spectrum sharing with cellular systems, even when the primary system is 100% utilized, a modest extent of transmissions of around 0.01–0.03 bps/Hz is achievable for secondary transmitter and receiver that are 400 m apart. In spectrum sharing with radars, even in the scenario where radars are the most densely packed, a secondary transmitter can get almost 1.2 bps/Hz on average, when 5% of the transmitters are competing for the shared spectrum. This dissertation also shows the potential of sharing models in which a secondary system has information about a primary system, but does not cooperate in real time; such arrangements are not typically considered today. For sharing with radars, the case in which an OFDMA-based cellular system operates as the secondary spectrum-user in non-contiguous cells is considered, as might occur with a broadband hotspot service, or a cellular system using shared spectrum to supplement its dedicated spectrum. It is found that even with fluctuations and interruptions in secondary transmissions while radars rotate, the shared spectrum could be used efficiently for applications that generate much of the traffic on mobile Internet, including non-interactive video on demand, peer-to-peer file sharing, large file transfers, and web browsing, but not for applications such as real-time transfers of small files, and VoIP. For sharing with cellular systems, the efficiency of cooperative and coexistent sharing is compared based on performance of the secondary system measured as achievable transmissions, and performance of the cellular system measured as power consumption of a mobile device, which may be increased to compensate for additional interference from secondary transmissions. When both achievable secondary transmissions and primary power consumption are of concern, coexistent sharing is found to be as effective as cooperative sharing. 2012-12-01T08:00:00Z text application/pdf http://repository.cmu.edu/dissertations/198 http://repository.cmu.edu/cgi/viewcontent.cgi?article=1197&context=dissertations Dissertations Research Showcase @ CMU Primary-secondary spectrum sharing Coexistent Cooperative Gray-space Cellular Radars Engineering Public Policy
collection NDLTD
format Others
sources NDLTD
topic Primary-secondary spectrum sharing
Coexistent
Cooperative
Gray-space
Cellular
Radars
Engineering
Public Policy
spellingShingle Primary-secondary spectrum sharing
Coexistent
Cooperative
Gray-space
Cellular
Radars
Engineering
Public Policy
Saruthirathanaworakun, Rathapon
Gray-Space Spectrum Sharing with Cellular Systems and Radars, and Policy Implications
description This dissertation considers gray-space primary-secondary spectrum sharing, in which secondary devices are allowed to transmit when primary transmissions are strong enough that additional interference would be tolerable, rather than when the primary transmissions are weak or absent so the spectrum is considered unused, as occurs in white-space sharing. To avoid causing harmful interference (i.e., interference causing disruptions in services), transmit power of a secondary device is dynamically adjusted. Various novel sharing mechanisms are proposed for two different types of primary system: cellular systems, and rotating radars. Both cases when primary and secondary systems cooperate (cooperative sharing), and when they do not (coexistent sharing) are considered. Based on analyses and extensive Monte Carlo simulations, this dissertation shows that useful secondary transmissions are possible even when the shared spectrum is considered 100% utilized by the primary system under conventional approaches to spectrum management. For example, in spectrum sharing with cellular systems, even when the primary system is 100% utilized, a modest extent of transmissions of around 0.01–0.03 bps/Hz is achievable for secondary transmitter and receiver that are 400 m apart. In spectrum sharing with radars, even in the scenario where radars are the most densely packed, a secondary transmitter can get almost 1.2 bps/Hz on average, when 5% of the transmitters are competing for the shared spectrum. This dissertation also shows the potential of sharing models in which a secondary system has information about a primary system, but does not cooperate in real time; such arrangements are not typically considered today. For sharing with radars, the case in which an OFDMA-based cellular system operates as the secondary spectrum-user in non-contiguous cells is considered, as might occur with a broadband hotspot service, or a cellular system using shared spectrum to supplement its dedicated spectrum. It is found that even with fluctuations and interruptions in secondary transmissions while radars rotate, the shared spectrum could be used efficiently for applications that generate much of the traffic on mobile Internet, including non-interactive video on demand, peer-to-peer file sharing, large file transfers, and web browsing, but not for applications such as real-time transfers of small files, and VoIP. For sharing with cellular systems, the efficiency of cooperative and coexistent sharing is compared based on performance of the secondary system measured as achievable transmissions, and performance of the cellular system measured as power consumption of a mobile device, which may be increased to compensate for additional interference from secondary transmissions. When both achievable secondary transmissions and primary power consumption are of concern, coexistent sharing is found to be as effective as cooperative sharing.
author Saruthirathanaworakun, Rathapon
author_facet Saruthirathanaworakun, Rathapon
author_sort Saruthirathanaworakun, Rathapon
title Gray-Space Spectrum Sharing with Cellular Systems and Radars, and Policy Implications
title_short Gray-Space Spectrum Sharing with Cellular Systems and Radars, and Policy Implications
title_full Gray-Space Spectrum Sharing with Cellular Systems and Radars, and Policy Implications
title_fullStr Gray-Space Spectrum Sharing with Cellular Systems and Radars, and Policy Implications
title_full_unstemmed Gray-Space Spectrum Sharing with Cellular Systems and Radars, and Policy Implications
title_sort gray-space spectrum sharing with cellular systems and radars, and policy implications
publisher Research Showcase @ CMU
publishDate 2012
url http://repository.cmu.edu/dissertations/198
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1197&context=dissertations
work_keys_str_mv AT saruthirathanaworakunrathapon grayspacespectrumsharingwithcellularsystemsandradarsandpolicyimplications
_version_ 1716709393633902592