Desensitisation of the pituitary vasopressin receptor : development of a model system to assess involvement of G protein-coupled receptor kinase 5.

The hypothalamic peptide arginine vasopressin (AVP) is an important regulator of adrenocorticotropin (ACTH) release from the anterior pituitary. AVP stimulates ACTH secretion from corticotroph cells by activating the pituitary vasopressin receptor (V1b-R), a member of the G protein-coupled receptor...

Full description

Bibliographic Details
Main Author: Gatehouse, Michelle
Language:en
Published: University of Canterbury. School of Biological Sciences 2009
Subjects:
Online Access:http://hdl.handle.net/10092/2627
Description
Summary:The hypothalamic peptide arginine vasopressin (AVP) is an important regulator of adrenocorticotropin (ACTH) release from the anterior pituitary. AVP stimulates ACTH secretion from corticotroph cells by activating the pituitary vasopressin receptor (V1b-R), a member of the G protein-coupled receptor (GPCR) family. In vitro, repeated stimulus of anterior pituitary cells with AVP results in rapid desensitisation. The aim of this research was to develop methods needed to use RNA interference (RNAi) to investigate the role of G protein-coupled receptor kinase 5 (GRK5) in this desensitisation process. This required the development of a model system using human embryonic kidney (HEK) 293 cells transfected with the pituitary vasopressin receptor, V1b-R. AVP binding to the V1bR activates the phosphoinositide signalling pathway, leading to production of inositol phosphates (IPs), which can be measured following radiolabelling of cells with myo-[³H]inositol. Stimulation of V1b-R-transfected cells for 15 min with AVP (100nM) increased IP production to 235.5 ± 23.4 % (n=3, p<0.02) of that seen in un-stimulated control cells. Following a 5 minute pre-treatment with 5nM VP, the IP response to stimulation with 100nM VP for 15 min was reduced to 62.8 ± 9.1 % (n=4, p<0.02) of that seen in control cells that were not pre-treated. These data indicate that AVP-desensitisation can be induced and measured in V1bR-transfected HEK293 cells following a brief pre-treatment with a physiological concentration of AVP. This model system will enable RNAi to be used to investigate the role of GRK5 in AVP-desensitisation. When using RNAi, it is essential to establish that the effects observed are the result of small interfering RNA (siRNA) specific degradation of the target mRNA. Quantitative reverse transcription PCR (qRT-PCR) was used to measure the expression of GRK5 at the mRNA level in HEK293 cells. Human GRK5 mRNA was amplified using qRT-PCR with GRK5 specific primers, providing confirmation that GRK5 is expressed endogenously in HEK293 cells. GRK5 expression studies were carried out to evaluate whether the qRT-PCR methods developed would be suitable to measure knockdown of GRK5 mRNA using RNAi. These experiments were also designed to assess the impact of HEK293 cell culture methods on expression of GRK5. Expression of GRK5 did not vary with passage number (2-26 passages). The GRK5 expression in HEK293 cells that were maintained in culture for 5 days (grown to a confluence of approximately 100%) was 7.4 ± 0.9 fold greater (n=2, p<0.05) than for cells cultured for 3 days (grown to a confluence of approximately 65%). These data indicate that GRK5 expression is affected by HEK293 culture conditions. Furthermore, the results demonstrated that a significant difference in GRK5 expression could be measured in HEK293 cells using qRT-PCR. Therefore the results reported in this thesis provide the basis for future studies utilising RNAi to investigate mechanisms underlying V1b-R desensitisation.