Numerical analysis of acoustic scattering by a thin circular disk, with application to train-tunnel interaction noise

The sound generated by high speed trains can be exacerbated by the presence of trackside structures. Tunnels are the principal structures that have a strong influence on the noise produced by trains. A train entering a tunnel causes air to flow in and out of the tunnel portal, forming a monopole...

Full description

Bibliographic Details
Main Author: Zagadou, Franck
Language:en_US
Published: Boston University 2021
Subjects:
Online Access:https://hdl.handle.net/2144/42324
Description
Summary:The sound generated by high speed trains can be exacerbated by the presence of trackside structures. Tunnels are the principal structures that have a strong influence on the noise produced by trains. A train entering a tunnel causes air to flow in and out of the tunnel portal, forming a monopole source of low frequency sound ["infrasound"] whose wavelength is large compared to the tunnel diameter. For the compact case, when the tunnel diameter is small, incompressible flow theory can be used to compute the Green's function that determines the monopole sound. However, when the infrasound is "shielded" from the far field by a large "flange" at the tunnel portal, the problem of calculating the sound produced in the far field is more complex. In this case, the monopole contribution can be calculated in a first approximation in terms of a modified Compact Green's function, whose properties are determined by the value at the center of a. disk (modelling the flange) of a diffracted potential produced by a thin circular disk. In this thesis this potential is calculated numerically. The scattering of sound by a thin circular disk is investigated using the Finite Difference Method applied to the three dimensional Helmholtz equation subject to appropriate boundary conditions on the disk. The solution is also used to examine the unsteady force acting on the disk.