Modularity of elliptic curves defined over function fields

We provide explicit equations for moduli spaces of Drinfeld shtukas over the projective line with Γ(N), Γ_1(N) and Γ_0(N) level structures, where N is an effective divisor on P^1 . If the degree of N is big enough, these moduli spaces are relative surfaces. We study how the moduli space of shtuk...

Full description

Bibliographic Details
Main Author: de Frutos Fernández, María Inés
Other Authors: Weinstein, Jared
Language:en_US
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/2144/41489
Description
Summary:We provide explicit equations for moduli spaces of Drinfeld shtukas over the projective line with Γ(N), Γ_1(N) and Γ_0(N) level structures, where N is an effective divisor on P^1 . If the degree of N is big enough, these moduli spaces are relative surfaces. We study how the moduli space of shtukas over P^1 with Γ_0(N) level structure, Sht^{2,tr}(Γ_0(N)), can be used to provide a notion of motivic modularity for elliptic curves defined over function fields. Elliptic curves over function fields are known to be modular in the sense of admitting a parametrization from a Drinfeld modular curve, provided that they have split multiplicative reduction at one place. We conjecture a different notion of modularity that should cover the curves excluded by the reduction hypothesis. We use our explicit equations for Sht^{2,tr}(Γ_0(N)) to verify our modularity conjecture in the cases where N = 2(0) + (1) + (∞) and N = 3(0) + (∞).