Improved methods for point of care detection of blood-borne pathogens

Preventing the spread of blood-borne infectious diseases is vital to improving global health outcomes, particularly for low- and middle-income countries (LMICs). Sensitive and accurate diagnosis of infections is vital to this effort. Nucleic acid amplification tests (NAATs), which amplify pathogen n...

Full description

Bibliographic Details
Main Author: Kolluri, Nikunja
Other Authors: Klapperich, Catherine M.
Language:en_US
Published: 2020
Subjects:
HIV
Online Access:https://hdl.handle.net/2144/41024
id ndltd-bu.edu-oai-open.bu.edu-2144-41024
record_format oai_dc
spelling ndltd-bu.edu-oai-open.bu.edu-2144-410242020-05-21T15:01:53Z Improved methods for point of care detection of blood-borne pathogens Kolluri, Nikunja Klapperich, Catherine M. Biomedical engineering Diagnostics DNA/RNA extraction HIV Isothermal Malaria Point of care Preventing the spread of blood-borne infectious diseases is vital to improving global health outcomes, particularly for low- and middle-income countries (LMICs). Sensitive and accurate diagnosis of infections is vital to this effort. Nucleic acid amplification tests (NAATs), which amplify pathogen nucleic acids, are gold-standard techniques for detection and quantification of pathogen levels. However, standard NAATs such as polymerase chain reaction (PCR) require expensive equipment for blood sample processing and DNA/RNA amplification, making them challenging to implement in resource-limited areas of LMICs. In this work, I developed two methods to simplify sample processing and amplification to make NAATs more accessible for use at the point of care in resource-limited areas of LMICs. The first method enables instrument-free nucleic acid extraction from whole blood. A room temperature lysis chemistry and a paper-and-plastic sample capture device were developed to isolate, purify, and store pathogen DNA and RNA on a paper capture membrane. Extracted nucleic acids can be eluted and used in standard NAATs or in developmental amplification assays. I demonstrated successful isolation of HIV virion RNA and P. falciparum parasite DNA from whole blood samples over several concentrations with >60% recovery. Extracted RNA remains stable on the capture membrane for two weeks at room temperature and 37°C, alleviating the need for cold storage after sample collection. These results are a promising step toward using this method for simplified sample extraction and storage in low-resource settings in LMICs. The second method I developed is a novel isothermal amplification technique for P. falciparum DNA. Sensitive diagnosis of P. falciparum infection is vital to identify and treat low-density, asymptomatic infections and move closer to eliminating malaria. Highly sensitive PCR assays are difficult to deploy in resource-limited areas of LMICs and existing isothermal methods require complex assay design and are often not sensitive enough to diagnose asymptomatic infections. Here, I developed a novel isothermal technique which amplifies multiple regions of the P. falciparum genome, generating a large amount of DNA for better analytical sensitivity. The assay achieves a lower limit of detection of ~23.4 fg P. falciparum gDNA/µL (~1 parasite/µL) in 30 minutes, similar gold-standard PCR assay while using a fraction of the resources required for PCR. Lastly, I adapted the assay for implementation at the point of care. I showed that the assay directly amplifies P. falciparum parasite DNA captured on paper with the paper-and-plastic device previously developed. I also incorporated visual assay readout with lateral flow strips, eliminating the need for specialized equipment to detect amplified DNA. I explored methods to eliminate cold storage of reagents by stabilizing amplification enzymes at room temperature. The work described in this thesis represents two enhanced methods for point of care detection of blood borne pathogens. By simplifying sample extraction, amplification, and detection, the methods described here make NAATs more accessible to low-resource areas of LMICs. The whole blood nucleic acid extraction device and isothermal assay described in this work can be used together for sensitive diagnosis of P. falciparum malaria. The methods can also be used independently, or in combination with other techniques routinely used in the field. The flexibility built in to these methods enables easier integration into existing workflows in LMICs. 2021-05-18T00:00:00Z 2020-05-19T17:59:43Z 2020 2020-05-19T04:02:26Z Thesis/Dissertation https://hdl.handle.net/2144/41024 0000-0002-2483-3926 en_US
collection NDLTD
language en_US
sources NDLTD
topic Biomedical engineering
Diagnostics
DNA/RNA extraction
HIV
Isothermal
Malaria
Point of care
spellingShingle Biomedical engineering
Diagnostics
DNA/RNA extraction
HIV
Isothermal
Malaria
Point of care
Kolluri, Nikunja
Improved methods for point of care detection of blood-borne pathogens
description Preventing the spread of blood-borne infectious diseases is vital to improving global health outcomes, particularly for low- and middle-income countries (LMICs). Sensitive and accurate diagnosis of infections is vital to this effort. Nucleic acid amplification tests (NAATs), which amplify pathogen nucleic acids, are gold-standard techniques for detection and quantification of pathogen levels. However, standard NAATs such as polymerase chain reaction (PCR) require expensive equipment for blood sample processing and DNA/RNA amplification, making them challenging to implement in resource-limited areas of LMICs. In this work, I developed two methods to simplify sample processing and amplification to make NAATs more accessible for use at the point of care in resource-limited areas of LMICs. The first method enables instrument-free nucleic acid extraction from whole blood. A room temperature lysis chemistry and a paper-and-plastic sample capture device were developed to isolate, purify, and store pathogen DNA and RNA on a paper capture membrane. Extracted nucleic acids can be eluted and used in standard NAATs or in developmental amplification assays. I demonstrated successful isolation of HIV virion RNA and P. falciparum parasite DNA from whole blood samples over several concentrations with >60% recovery. Extracted RNA remains stable on the capture membrane for two weeks at room temperature and 37°C, alleviating the need for cold storage after sample collection. These results are a promising step toward using this method for simplified sample extraction and storage in low-resource settings in LMICs. The second method I developed is a novel isothermal amplification technique for P. falciparum DNA. Sensitive diagnosis of P. falciparum infection is vital to identify and treat low-density, asymptomatic infections and move closer to eliminating malaria. Highly sensitive PCR assays are difficult to deploy in resource-limited areas of LMICs and existing isothermal methods require complex assay design and are often not sensitive enough to diagnose asymptomatic infections. Here, I developed a novel isothermal technique which amplifies multiple regions of the P. falciparum genome, generating a large amount of DNA for better analytical sensitivity. The assay achieves a lower limit of detection of ~23.4 fg P. falciparum gDNA/µL (~1 parasite/µL) in 30 minutes, similar gold-standard PCR assay while using a fraction of the resources required for PCR. Lastly, I adapted the assay for implementation at the point of care. I showed that the assay directly amplifies P. falciparum parasite DNA captured on paper with the paper-and-plastic device previously developed. I also incorporated visual assay readout with lateral flow strips, eliminating the need for specialized equipment to detect amplified DNA. I explored methods to eliminate cold storage of reagents by stabilizing amplification enzymes at room temperature. The work described in this thesis represents two enhanced methods for point of care detection of blood borne pathogens. By simplifying sample extraction, amplification, and detection, the methods described here make NAATs more accessible to low-resource areas of LMICs. The whole blood nucleic acid extraction device and isothermal assay described in this work can be used together for sensitive diagnosis of P. falciparum malaria. The methods can also be used independently, or in combination with other techniques routinely used in the field. The flexibility built in to these methods enables easier integration into existing workflows in LMICs. === 2021-05-18T00:00:00Z
author2 Klapperich, Catherine M.
author_facet Klapperich, Catherine M.
Kolluri, Nikunja
author Kolluri, Nikunja
author_sort Kolluri, Nikunja
title Improved methods for point of care detection of blood-borne pathogens
title_short Improved methods for point of care detection of blood-borne pathogens
title_full Improved methods for point of care detection of blood-borne pathogens
title_fullStr Improved methods for point of care detection of blood-borne pathogens
title_full_unstemmed Improved methods for point of care detection of blood-borne pathogens
title_sort improved methods for point of care detection of blood-borne pathogens
publishDate 2020
url https://hdl.handle.net/2144/41024
work_keys_str_mv AT kollurinikunja improvedmethodsforpointofcaredetectionofbloodbornepathogens
_version_ 1719315229326704640