Summary: | Heat generated by electronic devices must be dissipated in order to ensure reliability and prevent device failure. In order to design devices properly, it is important to have precise knowledge of materials' thermal properties at the nano and micro scales. Here we present a series of experimental studies of heat transport for two different types of material: a two dimensional (2D) material such as MoS2 and micron scale particles. We used frequency domain thermoreflectance (FDTR) to conduct all thermal property measurements. This technique can measure thin film thermal properties as well as characterize the interface between two materials.
Molybdenum disulfide (MoS2), a transition metal dichalcogenide, is a 2D material that has potential applications as a transistor in nanoelectronics due to its semiconductor properties. We studied cross plane thermal transport across exfoliated monolayer and few layer MoS2 deposited on two distinct substrates: SiO2 and Muscovite mica. The cross plane direction is critical in layer structure devices since the largest thermal resistances are found along this way. The results show enhanced thermal transport across monolayer MoS2 on both substrates indicating that monolayer MoS2 has superior thermal properties for its use in electronic devices. On the other hand, thermally conductive micro particles are used as fillers in composite materials in order to improve the thermal conductivity of the host or matrix material. They can be embedded in polymers for die attach applications as well as in metals to create more efficient heat sinks. We developed new FDTR based thermal models that apply to isolated particles as well as particles surrounded by another material. We tested the models with isolated diamond and silicon micron size particles and with diamond particles embedded in tin. We were able to obtain the thermal conductivity of individual particles, an effective particle volume and the thermal interface conductance between a particle and its surrounding matrix. This technique could have important applications in industry since it could be used to measure in situ the thermal interface conductance between particles and their matrix, often the highest thermal resistance in composite materials.
|