Summary: | In recent years, there has been increased awareness that stochasticity in chemical reactions and diffusion of molecules can have significant effects on the outcomes of intracellular processes, particularly given the low copy numbers of many proteins and mRNAs present in a cell. For such molecular species, the number and locations of molecules can provide a more accurate and detailed description than local concentration. In addition to diffusion, drift in the movements of molecules can play a key role in the dynamics of intracellular processes, and can often be modeled as arising from potential fields. Examples of sources of drift include active transport, variations in chemical potential, material heterogeneities in the cytoplasm, and local interactions with subcellular structures.
This dissertation presents a new numerical method for simulating the stochastically varying numbers and locations of molecular species undergoing chemical reactions and drift-diffusion. The method combines elements of the First-Passage Kinetic Monte Carlo (FPKMC) method for reaction-diffusion systems and the Wang—Peskin—Elston lattice discretization of the Fokker—Planck equation that describes drift-diffusion processes in which the drift arises from potential fields. In the FPKMC method, each molecule is enclosed within a "protective domain," either by itself or with a small number of other molecules. To sample when a molecule leaves its protective domain or a reaction occurs, the original FPKMC method relies on analytic solutions of one- and two-body diffusion equations within the protective domains, and therefore cannot be used in situations with non-constant drift. To allow for such drift in our new method (hereafter Dynamic Lattice FPKMC or DL-FPKMC), each molecule undergoes a continuous-time random walk on a lattice within its protective domain, and the lattices change adaptively over time.
One of the most commonly used spatial models for stochastic reaction-diffusion systems is the Smoluchowski diffusion-limited reaction (SDLR) model. The DL-FPKMC method generates convergent realizations of an extension of the SDLR model that includes drift from potentials. We present detailed numerical results demonstrating the convergence and accuracy of our method for various types of potentials (smooth, discontinuous, and constant). We also present several illustrative applications of DL-FPKMC, including examples motivated by cell biology.
|