Summary: | This thesis develops a new method for time-frequency signal processing and examines the relevance of the new representation in studies of neural coding in songbirds. The method groups together associated regions of the time-frequency plane into objects defined by time-frequency contours. By combining information about structurally stable contour shapes over multiple time-scales and angles, a signal decomposition is produced that distributes resolution adaptively. As a result, distinct signal components are represented in their own most parsimonious forms.
Next, through neural recordings in singing birds, it was found that activity in song premotor cortex is significantly correlated with the objects defined by this new representation of sound. In this process, an automated way of finding sub-syllable acoustic transitions in birdsongs was first developed, and then increased spiking probability was found at the boundaries of these acoustic transitions.
Finally, a new approach to study auditory cortical sequence processing more generally is proposed. In this approach, songbirds were trained to discriminate Morse-code-like sequences of clicks, and the neural correlates of this behavior were examined in primary and secondary auditory cortex. It was found that a distinct transformation of auditory responses to the sequences of clicks exists as information transferred from primary to secondary auditory areas. Neurons in secondary auditory areas respond asynchronously and selectively -- in a manner that depends on the temporal context of the click. This transformation from a temporal to a spatial representation of sound provides a possible basis for the songbird's natural ability to discriminate complex temporal sequences.
|