Developmental regulation of dental regeneration and morphogenesis in fishes

The study of odontogenesis has been limited by the lack of established developmental models which regenerate their teeth continuously throughout life. Furthermore, our understanding of dental morphogenesis is primarily based on research on the mouse. Evolutionary developmental biology seeks to compa...

Full description

Bibliographic Details
Main Author: Thiery, Alexandre
Other Authors: Fraser, Gareth
Published: University of Sheffield 2018
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767263
id ndltd-bl.uk-oai-ethos.bl.uk-767263
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-7672632019-03-14T03:37:40ZDevelopmental regulation of dental regeneration and morphogenesis in fishesThiery, AlexandreFraser, Gareth2018The study of odontogenesis has been limited by the lack of established developmental models which regenerate their teeth continuously throughout life. Furthermore, our understanding of dental morphogenesis is primarily based on research on the mouse. Evolutionary developmental biology seeks to comparatively study natural morphological diversity in order to identify the developmental mechanisms which underpin their evolution. Throughout this thesis, I investigate the process of dental morphogenesis and successional regeneration in both cartilaginous fishes (Chondrichthyes) and bony fishes (Osteichthyes), in order to provide a more detailed picture of the evolution of odontogenesis, and a reference point for the comparative study of dental regeneration in humans. I show that odontogenesis is widely conserved from sharks through to mammals, and that the most usual vertebrate dentitions develop from only subtle modification of the ancestral bauplan. Furthermore, the process of dental regeneration appears to be important, not only for the replacement of lost or damaged dentition, but also in the evolution of dental morphological diversification. Given that successional dental regeneration is an ancestral gnathostome characteristic, I also investigate the regulation of dental regeneration in a basal gnathostome lineage. Our de novo transcriptome sequencing and predictive gene regulatory network analysis reveals novel candidate markers involved in the regulation of successional dental regeneration, previously undescribed during odontogenesis. This thesis lays the groundwork for the comparative study of these novel markers in mammalian models.University of Sheffieldhttps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767263http://etheses.whiterose.ac.uk/21409/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
description The study of odontogenesis has been limited by the lack of established developmental models which regenerate their teeth continuously throughout life. Furthermore, our understanding of dental morphogenesis is primarily based on research on the mouse. Evolutionary developmental biology seeks to comparatively study natural morphological diversity in order to identify the developmental mechanisms which underpin their evolution. Throughout this thesis, I investigate the process of dental morphogenesis and successional regeneration in both cartilaginous fishes (Chondrichthyes) and bony fishes (Osteichthyes), in order to provide a more detailed picture of the evolution of odontogenesis, and a reference point for the comparative study of dental regeneration in humans. I show that odontogenesis is widely conserved from sharks through to mammals, and that the most usual vertebrate dentitions develop from only subtle modification of the ancestral bauplan. Furthermore, the process of dental regeneration appears to be important, not only for the replacement of lost or damaged dentition, but also in the evolution of dental morphological diversification. Given that successional dental regeneration is an ancestral gnathostome characteristic, I also investigate the regulation of dental regeneration in a basal gnathostome lineage. Our de novo transcriptome sequencing and predictive gene regulatory network analysis reveals novel candidate markers involved in the regulation of successional dental regeneration, previously undescribed during odontogenesis. This thesis lays the groundwork for the comparative study of these novel markers in mammalian models.
author2 Fraser, Gareth
author_facet Fraser, Gareth
Thiery, Alexandre
author Thiery, Alexandre
spellingShingle Thiery, Alexandre
Developmental regulation of dental regeneration and morphogenesis in fishes
author_sort Thiery, Alexandre
title Developmental regulation of dental regeneration and morphogenesis in fishes
title_short Developmental regulation of dental regeneration and morphogenesis in fishes
title_full Developmental regulation of dental regeneration and morphogenesis in fishes
title_fullStr Developmental regulation of dental regeneration and morphogenesis in fishes
title_full_unstemmed Developmental regulation of dental regeneration and morphogenesis in fishes
title_sort developmental regulation of dental regeneration and morphogenesis in fishes
publisher University of Sheffield
publishDate 2018
url https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767263
work_keys_str_mv AT thieryalexandre developmentalregulationofdentalregenerationandmorphogenesisinfishes
_version_ 1719003123365707776