Summary: | Focusing on the author's research aspects, the intelligent optimization algorithm and advanced control methods of the diesel engine's air path have been proposed in this work. In addition, the simulation platform and the HIL test platform are established for research activities on engine optimization and control. In this thesis, it presents an intelligent transient calibration method using the chaos-enhanced accelerated particle swarm optimization (CAPSO) algorithm. It is a model-based optimization approach. The test results show that the proposed method could locate the global optimal results of the controller parameters within good speed under various working conditions. The engine dynamic response is improved and a measurable drop of engine fuel consumption is acquired. The model predictive control (MPC) is selected for the controllers of DLEGR and VGT in the air-path of a diesel engine. Two MPC-based controllers are developed in this work, they are categorized into linear MPC and nonlinear MPC. Compared with conventional PIO controller, the MPC-based controllers show better reference trajectory tracking performance. Besides, an improvement of the engine fuel economy is obtained. The HIL test indicates the two controllers could be implemented on the real engine.
|