The study and replication of plant surfaces
The analysis and replication of surfaces which mimic the behaviour of plants is of importance as it can have a variety of applications. These applications, such as the collection of fog for drinking water, waterproof electronics, and antibiofouling devices have the potential to improve the day to da...
Main Author: | |
---|---|
Published: |
Durham University
2018
|
Subjects: | |
Online Access: | https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.753791 |
id |
ndltd-bl.uk-oai-ethos.bl.uk-753791 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-bl.uk-oai-ethos.bl.uk-7537912019-03-05T15:59:12ZThe study and replication of plant surfacesHarris, Matthew Thomas2018The analysis and replication of surfaces which mimic the behaviour of plants is of importance as it can have a variety of applications. These applications, such as the collection of fog for drinking water, waterproof electronics, and antibiofouling devices have the potential to improve the day to day lives of millions of people. In this thesis the surfaces of multiple plants were analysed and replicated using a variety of techniques to better understand and replicate their wetting mechanisms. Also developed were a range of new analysis and replication techniques which have many potential applications in future projects. The wetting mechanism and surface of Xanthosoma sagittifolium was investigated through the use of analytical techniques such as scanning electron microscopy and time of flight secondary ion mass spectrometry, before being replicated using a nanoimprinting process. This led to the successful production, and testing, of replicas of the leaves of Xanthosoma sagittifolium. These techniques were also employed to aid in the analysis of other plant surfaces, such as that of Eremopyrum orientale and Phyllostachys aurea, and led to the development of a new technique by which plant surfaces could be analysed using time of flight secondary ion mass spectrometry without the need for a live specimen. Also developed was a new replication method employing 3D printing to replicate the surfaces of Phyllostachys aurea. The development of these techniques should prove useful in future analysis and replication of plant surfaces, particularly in countries where resources are limited, or where the plant of interest is in an isolated location.540Durham Universityhttps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.753791http://etheses.dur.ac.uk/12762/Electronic Thesis or Dissertation |
collection |
NDLTD |
sources |
NDLTD |
topic |
540 |
spellingShingle |
540 Harris, Matthew Thomas The study and replication of plant surfaces |
description |
The analysis and replication of surfaces which mimic the behaviour of plants is of importance as it can have a variety of applications. These applications, such as the collection of fog for drinking water, waterproof electronics, and antibiofouling devices have the potential to improve the day to day lives of millions of people. In this thesis the surfaces of multiple plants were analysed and replicated using a variety of techniques to better understand and replicate their wetting mechanisms. Also developed were a range of new analysis and replication techniques which have many potential applications in future projects. The wetting mechanism and surface of Xanthosoma sagittifolium was investigated through the use of analytical techniques such as scanning electron microscopy and time of flight secondary ion mass spectrometry, before being replicated using a nanoimprinting process. This led to the successful production, and testing, of replicas of the leaves of Xanthosoma sagittifolium. These techniques were also employed to aid in the analysis of other plant surfaces, such as that of Eremopyrum orientale and Phyllostachys aurea, and led to the development of a new technique by which plant surfaces could be analysed using time of flight secondary ion mass spectrometry without the need for a live specimen. Also developed was a new replication method employing 3D printing to replicate the surfaces of Phyllostachys aurea. The development of these techniques should prove useful in future analysis and replication of plant surfaces, particularly in countries where resources are limited, or where the plant of interest is in an isolated location. |
author |
Harris, Matthew Thomas |
author_facet |
Harris, Matthew Thomas |
author_sort |
Harris, Matthew Thomas |
title |
The study and replication of plant surfaces |
title_short |
The study and replication of plant surfaces |
title_full |
The study and replication of plant surfaces |
title_fullStr |
The study and replication of plant surfaces |
title_full_unstemmed |
The study and replication of plant surfaces |
title_sort |
study and replication of plant surfaces |
publisher |
Durham University |
publishDate |
2018 |
url |
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.753791 |
work_keys_str_mv |
AT harrismatthewthomas thestudyandreplicationofplantsurfaces AT harrismatthewthomas studyandreplicationofplantsurfaces |
_version_ |
1718999292272705536 |