Transformation characteristics of some beta zirconium alloys

The phase transformation types operative in the decomposition of partially stabilised and fully stabilised B Zr-Mo binary and B Zr-Mo-Al ternary alloys have been investigated with hardness, x-ray diffraction and metallographic methods. The report is presented in two volumes. In all these alloys, dec...

Full description

Bibliographic Details
Main Author: Vanderpuye, N. A.
Published: University of Surrey 1967
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.751693
id ndltd-bl.uk-oai-ethos.bl.uk-751693
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-7516932018-10-09T03:26:03ZTransformation characteristics of some beta zirconium alloysVanderpuye, N. A.1967The phase transformation types operative in the decomposition of partially stabilised and fully stabilised B Zr-Mo binary and B Zr-Mo-Al ternary alloys have been investigated with hardness, x-ray diffraction and metallographic methods. The report is presented in two volumes. In all these alloys, decomposition of the ft phase involves the metastable hardening phase w whose temperature stability is of great interest to reactor technologists. It is demonstrated that although quenched alloys containing to yield higher hardness than either a or B , ageing renders such alloys harder by 100-150 V.P.N. Furthermore, although in both binary and ternary alloys the increase in ageing hardness is inversely proportional to the temperature of ageing, the increase is markedly greater in the ternary alloys containing aluminium (c.p. 423 and 480 V.P.N. at 500 C for 7% Mo binary and 7% Mo-3% Al ternary alloy). Thus ternary alloys compounded by the addition of a stabilising substitutional solutes to ft -binary alloys enhance the temperature stability by raising the (w+B)/(Be+a) boundary and allowing larger proportions of w to coexist with B during ageing. The part played in the transformations by B platelike precipitates has been found to be unimportant in water-quenched specimens. The precipitates are however induced by hydrogen and are most probably metastable hydrides. Larger quantities of hydrogen (> 0.5 at.%) do affect the decomposition of the B phase, causing higher as-quenched hardness but lower ageing hardness than in normal water-quenched alloys. In terms of the (w + B) metastable constitution alone this behaviour is inconsistent and puzzling. An extensive literature survey has enabled the experimental contribution to be assessed in terms of the behaviour of other B -zirconium and B -titanium alloys. Critical compositions - e.g. all- w peak, complete stabilisation of B and (w + B) mixture yielding the highest ageing hardness appear to be directly related to the ft stabilising capacity of the solute and consequently reflect an electronic factor.University of Surreyhttps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.751693http://epubs.surrey.ac.uk/848428/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
description The phase transformation types operative in the decomposition of partially stabilised and fully stabilised B Zr-Mo binary and B Zr-Mo-Al ternary alloys have been investigated with hardness, x-ray diffraction and metallographic methods. The report is presented in two volumes. In all these alloys, decomposition of the ft phase involves the metastable hardening phase w whose temperature stability is of great interest to reactor technologists. It is demonstrated that although quenched alloys containing to yield higher hardness than either a or B , ageing renders such alloys harder by 100-150 V.P.N. Furthermore, although in both binary and ternary alloys the increase in ageing hardness is inversely proportional to the temperature of ageing, the increase is markedly greater in the ternary alloys containing aluminium (c.p. 423 and 480 V.P.N. at 500 C for 7% Mo binary and 7% Mo-3% Al ternary alloy). Thus ternary alloys compounded by the addition of a stabilising substitutional solutes to ft -binary alloys enhance the temperature stability by raising the (w+B)/(Be+a) boundary and allowing larger proportions of w to coexist with B during ageing. The part played in the transformations by B platelike precipitates has been found to be unimportant in water-quenched specimens. The precipitates are however induced by hydrogen and are most probably metastable hydrides. Larger quantities of hydrogen (> 0.5 at.%) do affect the decomposition of the B phase, causing higher as-quenched hardness but lower ageing hardness than in normal water-quenched alloys. In terms of the (w + B) metastable constitution alone this behaviour is inconsistent and puzzling. An extensive literature survey has enabled the experimental contribution to be assessed in terms of the behaviour of other B -zirconium and B -titanium alloys. Critical compositions - e.g. all- w peak, complete stabilisation of B and (w + B) mixture yielding the highest ageing hardness appear to be directly related to the ft stabilising capacity of the solute and consequently reflect an electronic factor.
author Vanderpuye, N. A.
spellingShingle Vanderpuye, N. A.
Transformation characteristics of some beta zirconium alloys
author_facet Vanderpuye, N. A.
author_sort Vanderpuye, N. A.
title Transformation characteristics of some beta zirconium alloys
title_short Transformation characteristics of some beta zirconium alloys
title_full Transformation characteristics of some beta zirconium alloys
title_fullStr Transformation characteristics of some beta zirconium alloys
title_full_unstemmed Transformation characteristics of some beta zirconium alloys
title_sort transformation characteristics of some beta zirconium alloys
publisher University of Surrey
publishDate 1967
url https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.751693
work_keys_str_mv AT vanderpuyena transformationcharacteristicsofsomebetazirconiumalloys
_version_ 1718772616867610624