The mechanism of stress corrosion cracking in pure iron base alloys

The mechanism of stress corrosion cracking in pure iron base alloys was studied in terms of the effect of the carbide forming nature of a series of addition elements upon the location within the material of the interstitial elements contained in the alloys. The iron used was of very high purity, in...

Full description

Bibliographic Details
Main Author: Long, L. M.
Published: University of Surrey 1967
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.751684
id ndltd-bl.uk-oai-ethos.bl.uk-751684
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-7516842018-10-09T03:26:03ZThe mechanism of stress corrosion cracking in pure iron base alloysLong, L. M.1967The mechanism of stress corrosion cracking in pure iron base alloys was studied in terms of the effect of the carbide forming nature of a series of addition elements upon the location within the material of the interstitial elements contained in the alloys. The iron used was of very high purity, in order that the variables to be assessed were uninfluenced by extraneous composition effects. Susceptibility to s.c.c. in an aqueous calcium/ammonium nitrate solution at 110+/-C was found to be dependent upon the carbide forming strength of the addition element. The transitional s.c.c. behaviour of an Fe-1%Mn alloy was used to assess the activation energies involved in obtaining immune and susceptible behaviour. A study was made of the nature of time-to-failure values, and it was found that immune and susceptible materials behaved similarly potentiometrically, with susceptible materials failing at an early point in the established pattern. A theory of the mechanism of failure has been suggested that involves electrochemical attack, an adsorption process and brittle fracture. The susceptible behaviour of alloys was correlated with the restricted slip in the grain boundary regions brought about by the presence there of interstitial elements. Suggestions have been made for further research.University of Surreyhttps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.751684http://epubs.surrey.ac.uk/848290/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
description The mechanism of stress corrosion cracking in pure iron base alloys was studied in terms of the effect of the carbide forming nature of a series of addition elements upon the location within the material of the interstitial elements contained in the alloys. The iron used was of very high purity, in order that the variables to be assessed were uninfluenced by extraneous composition effects. Susceptibility to s.c.c. in an aqueous calcium/ammonium nitrate solution at 110+/-C was found to be dependent upon the carbide forming strength of the addition element. The transitional s.c.c. behaviour of an Fe-1%Mn alloy was used to assess the activation energies involved in obtaining immune and susceptible behaviour. A study was made of the nature of time-to-failure values, and it was found that immune and susceptible materials behaved similarly potentiometrically, with susceptible materials failing at an early point in the established pattern. A theory of the mechanism of failure has been suggested that involves electrochemical attack, an adsorption process and brittle fracture. The susceptible behaviour of alloys was correlated with the restricted slip in the grain boundary regions brought about by the presence there of interstitial elements. Suggestions have been made for further research.
author Long, L. M.
spellingShingle Long, L. M.
The mechanism of stress corrosion cracking in pure iron base alloys
author_facet Long, L. M.
author_sort Long, L. M.
title The mechanism of stress corrosion cracking in pure iron base alloys
title_short The mechanism of stress corrosion cracking in pure iron base alloys
title_full The mechanism of stress corrosion cracking in pure iron base alloys
title_fullStr The mechanism of stress corrosion cracking in pure iron base alloys
title_full_unstemmed The mechanism of stress corrosion cracking in pure iron base alloys
title_sort mechanism of stress corrosion cracking in pure iron base alloys
publisher University of Surrey
publishDate 1967
url https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.751684
work_keys_str_mv AT longlm themechanismofstresscorrosioncrackinginpureironbasealloys
AT longlm mechanismofstresscorrosioncrackinginpureironbasealloys
_version_ 1718772615430012928