Symbolic execution of verification languages and floating-point code

The focus of this thesis is a program analysis technique named symbolic execution. We present three main contributions to this field. First, an investigation into comparing several state-of-the-art program analysis tools at the level of an intermediate verification language over a large set of bench...

Full description

Bibliographic Details
Main Author: Liew, Daniel Simon
Other Authors: Donaldson, Alastair ; Cadar, Cristian
Published: Imperial College London 2017
Subjects:
004
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.745301
Description
Summary:The focus of this thesis is a program analysis technique named symbolic execution. We present three main contributions to this field. First, an investigation into comparing several state-of-the-art program analysis tools at the level of an intermediate verification language over a large set of benchmarks, and improvements to the state-of-the-art of symbolic execution for this language. This is explored via a new tool, Symbooglix, that operates on the Boogie intermediate verification language. Second, an investigation into performing symbolic execution of floating-point programs via a standardised theory of floating-point arithmetic that is supported by several existing constraint solvers. This is investigated via two independent extensions of the KLEE symbolic execution engine to support reasoning about floating-point operations (with one tool developed by the thesis author). Third, an investigation into the use of coverage-guided fuzzing as a means for solving constraints over finite data types, inspired by the difficulties associated with solving floating-point constraints. The associated prototype tool, JFS, which builds on the LibFuzzer project, can at present be applied to a wide range of SMT queries over bit-vector and floating-point variables, and shows promise on floating-point constraints.