Summary: | The quorum sensing (QS) signalling system allows colonies of bacteria to coordinate gene expression to optimise behaviour at low and high cell densities, giving rise to individual and group responses, respectively. The main aim of this thesis is to understand better the important roles of QS in bacterial colony dynamics. Thus a mathematical description was developed to thoroughly explore key mechanisms and parameter sensitivity. The nature of the QS system depends very much on the species. Pseudomonas aeruginosa was chosen as a model species for this study. P. aeruginosa is a Gram-negative bacterium that is responsible for a wide range of chronic infections in humans. Its QS signalling system is known to involve the las, rhl and pqs systems; this thesis focuses on the first two. The las system includes the LasR regulator and LasI synthase, which direct the synthesis of autoinducer 3O-C12-HSL. Similarly, the rhl system consists of the RhlR regulator and RhlI synthase, directing the synthesis of autoinducer C4-HSL. The mathematical model of the las system displays hysteresis phenomena and excitable dynamics. In essence, the system can have two stable steady states reflecting low and high signal molecule production, separated by one unstable steady state. This feature of the las system can give rise to excitable pulse generation with important downstream impact on the rhl system. The las system is coupled to the rhl system in two ways. First, LasR and 3O-C12-HSL activate the expression of their counterpart in the rhl system. Second, 3O-C12-HSL blocks activation of RhlR by C4-HSL. Furthermore, the las-rhl interaction provides a `quorum memory' that allows cells to trigger rhamnolipid production when they are at the edge of colony. It was demonstrated how the dynamical QS system in individual cells and with coupling between cells can affect the dynamics of the bacterial colony.
|