The development of methods for the reproduction in continuous tone of digitally printed colour artworks

Advances in printing technologies in the late 19th century led to the development of half-toning techniques enabling the economical reproduction of photographic images in print. Whilst undoubtedly successful in low cost high volume image reproduction, half-toning representations are less faithful in...

Full description

Bibliographic Details
Main Author: McCallion, P. J.
Published: University of the West of England, Bristol 2017
Subjects:
771
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725303
Description
Summary:Advances in printing technologies in the late 19th century led to the development of half-toning techniques enabling the economical reproduction of photographic images in print. Whilst undoubtedly successful in low cost high volume image reproduction, half-toning representations are less faithful in detail when compared to continuous tone photomechanical methods in use at that time. This thesis asks the question: can the creative application of 21st century digital fabrication technologies enable the qualities of continuous tone imaging to be regained? In the 21st-century, printmaking may be seen as the interchange of ideas, experimental practice and interdisciplinary thinking. Printmaking has always been a means of combining modern technology and methods with existing traditional and commercial imaging processes. Technological advancement in print however does not always provide a finer quality of print. Qualities often attributed to pre-digital continuous tone printing can be lost in the transition to a digital half tone print workflow. This research project examines a near obsolete 19th century print process, the continuous tone Woodburytype, developed to address the issue of permanence in photography. Through a methodological approach analyses of the Woodburytype an empirical reconstruction of the process provides a comprehensive critique of its method. The Woodburytype’s surface qualities are not found in other photomechanical printing methods capable of rendering finely detailed photographic images. Its method of image translation results in the printed tonal range being directly proportional to the deposition thickness of the printing ink, however it never successfully developed into a colour process. By examining and evaluating digital imaging technology this study identifies, current computer aided design and manufacturing techniques and extends upon known models of Woodburytype printing through the development of this deposition height quality enabling a new digital polychromatic colour printing process.