Combined two-dimensional electron gas and artificial spin ice structures

This thesis presents research into the electron transport properties of hybrid semiconductor / ferromagnetic structures. Periodic arrays of ferromagnetic stripes and artificial spin ice (ASI - arrays of geometrically frustrated nanomagnets) are patterned atop GaAs-AlGaAs wafers containing a two-dime...

Full description

Bibliographic Details
Main Author: Riley, Susan Tania
Other Authors: Cunningham, John E. ; Marrows, Christopher H.
Published: University of Leeds 2016
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694110
id ndltd-bl.uk-oai-ethos.bl.uk-694110
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-6941102018-04-04T03:32:46ZCombined two-dimensional electron gas and artificial spin ice structuresRiley, Susan TaniaCunningham, John E. ; Marrows, Christopher H.2016This thesis presents research into the electron transport properties of hybrid semiconductor / ferromagnetic structures. Periodic arrays of ferromagnetic stripes and artificial spin ice (ASI - arrays of geometrically frustrated nanomagnets) are patterned atop GaAs-AlGaAs wafers containing a two-dimensional electron gas (2DEG), and resistance measurements are performed under cryogenic temperatures and applied magnetic fields. The effects of piezoelectric strain on the transport properties of 2DEGs are investigated by comparing the resistances of magnetic and non-magnetic stripes patterned atop a 2DEG. Piezoelectric strain manifests itself as electric commensurability oscillations in the longitudinal resistance of a 2DEG. These oscillations are independent of temperature and are caused by stress acting upon the edges of the stripes. Transport measurements of combined 2DEG / ASI structures reveal the first observations of commensurability oscillations (COs) caused by ASI in the longitudinal resistance of a 2DEG. These oscillations are periodic on length-scales commensurate with the length of the individual nanomagnets that form the ASI. The COs are temperature dependent, but independent of the angle of applied magnetic field for our particular samples. Models based upon a Fourier analysis of Maxwell's equations help explain our results. This thesis also addresses the thermally-activated magnetization dynamics behaviour of ASI. We show exactly how the proportion of each vertex type changes as an ASI is heated, and moves from an ordered state to a ground state. We compare the results from two different alloys of PdFe and three different lattice spacings. The way in which arrays of ASI change to a ground state is dependent upon the material composition of the ASI, with little dependence upon the period of the ASI. A material with a large magnetization requires a higher temperature to cause any magnetic spins to flip, after which the ASI abruptly changes from an ordered state to a ground state.621.3815University of Leedshttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694110http://etheses.whiterose.ac.uk/13973/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 621.3815
spellingShingle 621.3815
Riley, Susan Tania
Combined two-dimensional electron gas and artificial spin ice structures
description This thesis presents research into the electron transport properties of hybrid semiconductor / ferromagnetic structures. Periodic arrays of ferromagnetic stripes and artificial spin ice (ASI - arrays of geometrically frustrated nanomagnets) are patterned atop GaAs-AlGaAs wafers containing a two-dimensional electron gas (2DEG), and resistance measurements are performed under cryogenic temperatures and applied magnetic fields. The effects of piezoelectric strain on the transport properties of 2DEGs are investigated by comparing the resistances of magnetic and non-magnetic stripes patterned atop a 2DEG. Piezoelectric strain manifests itself as electric commensurability oscillations in the longitudinal resistance of a 2DEG. These oscillations are independent of temperature and are caused by stress acting upon the edges of the stripes. Transport measurements of combined 2DEG / ASI structures reveal the first observations of commensurability oscillations (COs) caused by ASI in the longitudinal resistance of a 2DEG. These oscillations are periodic on length-scales commensurate with the length of the individual nanomagnets that form the ASI. The COs are temperature dependent, but independent of the angle of applied magnetic field for our particular samples. Models based upon a Fourier analysis of Maxwell's equations help explain our results. This thesis also addresses the thermally-activated magnetization dynamics behaviour of ASI. We show exactly how the proportion of each vertex type changes as an ASI is heated, and moves from an ordered state to a ground state. We compare the results from two different alloys of PdFe and three different lattice spacings. The way in which arrays of ASI change to a ground state is dependent upon the material composition of the ASI, with little dependence upon the period of the ASI. A material with a large magnetization requires a higher temperature to cause any magnetic spins to flip, after which the ASI abruptly changes from an ordered state to a ground state.
author2 Cunningham, John E. ; Marrows, Christopher H.
author_facet Cunningham, John E. ; Marrows, Christopher H.
Riley, Susan Tania
author Riley, Susan Tania
author_sort Riley, Susan Tania
title Combined two-dimensional electron gas and artificial spin ice structures
title_short Combined two-dimensional electron gas and artificial spin ice structures
title_full Combined two-dimensional electron gas and artificial spin ice structures
title_fullStr Combined two-dimensional electron gas and artificial spin ice structures
title_full_unstemmed Combined two-dimensional electron gas and artificial spin ice structures
title_sort combined two-dimensional electron gas and artificial spin ice structures
publisher University of Leeds
publishDate 2016
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694110
work_keys_str_mv AT rileysusantania combinedtwodimensionalelectrongasandartificialspinicestructures
_version_ 1718619719565574144