A scalable design framework for variability management in large-scale software product lines
Variability management is one of the major challenges in software product line adoption, since it needs to be efficiently managed at various levels of the software product line development process (e.g., requirement analysis, design, implementation, etc.). One of the main challenges within variabili...
Main Author: | |
---|---|
Published: |
University of East London
2016
|
Subjects: | |
Online Access: | https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685726 |
id |
ndltd-bl.uk-oai-ethos.bl.uk-685726 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-bl.uk-oai-ethos.bl.uk-6857262019-01-15T03:18:27ZA scalable design framework for variability management in large-scale software product linesGarba, Muhammad2016Variability management is one of the major challenges in software product line adoption, since it needs to be efficiently managed at various levels of the software product line development process (e.g., requirement analysis, design, implementation, etc.). One of the main challenges within variability management is the handling and effective visualization of large-scale (industry-size) models, which in many projects, can reach the order of thousands, along with the dependency relationships that exist among them. These have raised many concerns regarding the scalability of current variability management tools and techniques and their lack of industrial adoption. To address the scalability issues, this work employed a combination of quantitative and qualitative research methods to identify the reasons behind the limited scalability of existing variability management tools and techniques. In addition to producing a comprehensive catalogue of existing tools, the outcome form this stage helped understand the major limitations of existing tools. Based on the findings, a novel approach was created for managing variability that employed two main principles for supporting scalability. First, the separation-of-concerns principle was employed by creating multiple views of variability models to alleviate information overload. Second, hyperbolic trees were used to visualise models (compared to Euclidian space trees traditionally used). The result was an approach that can represent models encompassing hundreds of variability points and complex relationships. These concepts were demonstrated by implementing them in an existing variability management tool and using it to model a real-life product line with over a thousand variability points. Finally, in order to assess the work, an evaluation framework was designed based on various established usability assessment best practices and standards. The framework was then used with several case studies to benchmark the performance of this work against other existing tools.005.1University of East London10.15123/PUB.5032https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685726http://roar.uel.ac.uk/5032/Electronic Thesis or Dissertation |
collection |
NDLTD |
sources |
NDLTD |
topic |
005.1 |
spellingShingle |
005.1 Garba, Muhammad A scalable design framework for variability management in large-scale software product lines |
description |
Variability management is one of the major challenges in software product line adoption, since it needs to be efficiently managed at various levels of the software product line development process (e.g., requirement analysis, design, implementation, etc.). One of the main challenges within variability management is the handling and effective visualization of large-scale (industry-size) models, which in many projects, can reach the order of thousands, along with the dependency relationships that exist among them. These have raised many concerns regarding the scalability of current variability management tools and techniques and their lack of industrial adoption. To address the scalability issues, this work employed a combination of quantitative and qualitative research methods to identify the reasons behind the limited scalability of existing variability management tools and techniques. In addition to producing a comprehensive catalogue of existing tools, the outcome form this stage helped understand the major limitations of existing tools. Based on the findings, a novel approach was created for managing variability that employed two main principles for supporting scalability. First, the separation-of-concerns principle was employed by creating multiple views of variability models to alleviate information overload. Second, hyperbolic trees were used to visualise models (compared to Euclidian space trees traditionally used). The result was an approach that can represent models encompassing hundreds of variability points and complex relationships. These concepts were demonstrated by implementing them in an existing variability management tool and using it to model a real-life product line with over a thousand variability points. Finally, in order to assess the work, an evaluation framework was designed based on various established usability assessment best practices and standards. The framework was then used with several case studies to benchmark the performance of this work against other existing tools. |
author |
Garba, Muhammad |
author_facet |
Garba, Muhammad |
author_sort |
Garba, Muhammad |
title |
A scalable design framework for variability management in large-scale software product lines |
title_short |
A scalable design framework for variability management in large-scale software product lines |
title_full |
A scalable design framework for variability management in large-scale software product lines |
title_fullStr |
A scalable design framework for variability management in large-scale software product lines |
title_full_unstemmed |
A scalable design framework for variability management in large-scale software product lines |
title_sort |
scalable design framework for variability management in large-scale software product lines |
publisher |
University of East London |
publishDate |
2016 |
url |
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685726 |
work_keys_str_mv |
AT garbamuhammad ascalabledesignframeworkforvariabilitymanagementinlargescalesoftwareproductlines AT garbamuhammad scalabledesignframeworkforvariabilitymanagementinlargescalesoftwareproductlines |
_version_ |
1718813744119676928 |