Manufacturing novel fibre

The work described in this thesis has been funded by the “Engineering and Physical Sciences Research Council’s Centre for Innovative Manufacturing in Photonics” and has been part of the work undertaken by the “Non-Silica Glasses and Related Fibre Technology” work package, within the “Novel Glass and...

Full description

Bibliographic Details
Main Author: Bastock, Paul
Other Authors: Hewak, Daniel
Published: University of Southampton 2015
Subjects:
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.680681
Description
Summary:The work described in this thesis has been funded by the “Engineering and Physical Sciences Research Council’s Centre for Innovative Manufacturing in Photonics” and has been part of the work undertaken by the “Non-Silica Glasses and Related Fibre Technology” work package, within the “Novel Glass and Fibre” group at the Optoelectronics Research Centre. Original contributions to the field include the development of a novel fibre drawing tower, which has allowed over three hundred fibre draws to be accomplished, resulting in composite metal-glass fibre and infrared transmitting fibre manufacturing processes being established. Most significantly, a refined fibre drawing procedure to produce up to 50 km of continuous glass-encapsulated microwire has been created. Fibre has been fabricated with an outer diameter of around 23 μm and inner diameter of around 4 μm, featuring standard deviations of just 2.2 and 0.8 μm for outer and inner diameters respectively, over kilometres of length. A large portion of the work reported in this thesis has been in collaboration with industrial and academic partners, including Rolls Royce, Shell, National Physical Laboratory, Nanyang Technological University, Laboratory of Ultrafast Spectrometry and others. Characterisation of optical materials has founded relationships with many partners including the University of Oxford and SPI Lasers Ltd. Analysis has been carried out for many groups within the Optoelectronics Research Centre, including the Photovoltaic, Compound Glass, Silica Fibre Fabrication and Integrated Photonics groups. Other academic units at the University of Southampton including the ‘Electronics and Computer Science’, Chemistry and ‘Engineering and the Environment’ departments have also had valuable material characterisation performed with the use of the facilities described in this work. Impurity analysis of optical glasses and raw materials has established a relationship with Northern Analytical Laboratory Inc., who has provided continued analysis for the advancing glass melting facility mentioned in this thesis.