WS2 nanoparticles as lubricant additives

Due to their excellent tribological properties and potential to replace problematic lubricant additives currently in use, WS2 nanoparticles (NPs) have spurred considerable interest from academia and industry over the last two decades to decipher their mechanism of action. To elucidate the mechanism,...

Full description

Bibliographic Details
Main Author: Niste, Vlad
Other Authors: Ratoi, Monica
Published: University of Southampton 2015
Subjects:
620
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675170
id ndltd-bl.uk-oai-ethos.bl.uk-675170
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-6751702018-09-05T03:27:11ZWS2 nanoparticles as lubricant additivesNiste, VladRatoi, Monica2015Due to their excellent tribological properties and potential to replace problematic lubricant additives currently in use, WS2 nanoparticles (NPs) have spurred considerable interest from academia and industry over the last two decades to decipher their mechanism of action. To elucidate the mechanism, this study carried out tribological tests at high pressures and low/high temperatures (40 and 100ºC) and investigated the tribofilm generated on the wear track and its wear and friction properties. It was found that WS2 NPs react with the metal substrate at high temperatures to form a chemical tribofilm covered with squashed NPs. The generation of this tribofilm accounts for their excellent tribological properties. By investigating the chemical and mechanical properties of the tribofilm, it was possible to explain the tribological properties of WS2 NPs. Based on chemical analysis results, a layered structure was proposed for the chemically formed tribofilms. The large amount of tungsten compounds in the composition may explain the excellent mechanical properties of the tribofilm, as revealed by nanoindentation tests. The importance of base oil polarity was investigated. It was found that the efficiency of the NPs is reduced in polar oils, because the oil molecules can compete with the nanoadditive by adsorbing on the metal surface in the tribological contact and impeding the formation of the tribofilm. To investigate which type of WS2 NPs (2H or IF) performs better in tribological applications and if other tungsten dichalcogenides (IF-WSe2) are also potential candidates as nanoadditives, tribological tests and analysis of the wear tracks were performed. 2H-WS2 showed superior friction and wear reducing properties in high-pressure high-temperature contacts. The tribological performance of 2H-WS2 NPs was compared to that of popular conventional additives, e.g. antiwear zinc dialkyldithiophosphates (ZDDPs) and organic friction modifiers (OFMs). At the end of three hour tests, 2H-WS2 NPs and ZDDP+OFM mixtures showed similar antiwear properties, but 2H-WS2 NPs induced a significant reduction of the friction coefficient in the mixed and boundary lubrication regimes. The ability of 2H-WS2 NPs to inhibit hydrogen permeation in high strength bearing steel used in fuel cells and wind turbines was also investigated. Thermal desorption spectroscopy revealed that the chemical tribofilm generated on the wear tracks can significantly reduce the concentration of hydrogen and water in the steel substrate after rolling contact fatigue tests performed in high-temperature high-pressure conditions.620T Technology (General)University of Southamptonhttps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675170https://eprints.soton.ac.uk/383967/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 620
T Technology (General)
spellingShingle 620
T Technology (General)
Niste, Vlad
WS2 nanoparticles as lubricant additives
description Due to their excellent tribological properties and potential to replace problematic lubricant additives currently in use, WS2 nanoparticles (NPs) have spurred considerable interest from academia and industry over the last two decades to decipher their mechanism of action. To elucidate the mechanism, this study carried out tribological tests at high pressures and low/high temperatures (40 and 100ºC) and investigated the tribofilm generated on the wear track and its wear and friction properties. It was found that WS2 NPs react with the metal substrate at high temperatures to form a chemical tribofilm covered with squashed NPs. The generation of this tribofilm accounts for their excellent tribological properties. By investigating the chemical and mechanical properties of the tribofilm, it was possible to explain the tribological properties of WS2 NPs. Based on chemical analysis results, a layered structure was proposed for the chemically formed tribofilms. The large amount of tungsten compounds in the composition may explain the excellent mechanical properties of the tribofilm, as revealed by nanoindentation tests. The importance of base oil polarity was investigated. It was found that the efficiency of the NPs is reduced in polar oils, because the oil molecules can compete with the nanoadditive by adsorbing on the metal surface in the tribological contact and impeding the formation of the tribofilm. To investigate which type of WS2 NPs (2H or IF) performs better in tribological applications and if other tungsten dichalcogenides (IF-WSe2) are also potential candidates as nanoadditives, tribological tests and analysis of the wear tracks were performed. 2H-WS2 showed superior friction and wear reducing properties in high-pressure high-temperature contacts. The tribological performance of 2H-WS2 NPs was compared to that of popular conventional additives, e.g. antiwear zinc dialkyldithiophosphates (ZDDPs) and organic friction modifiers (OFMs). At the end of three hour tests, 2H-WS2 NPs and ZDDP+OFM mixtures showed similar antiwear properties, but 2H-WS2 NPs induced a significant reduction of the friction coefficient in the mixed and boundary lubrication regimes. The ability of 2H-WS2 NPs to inhibit hydrogen permeation in high strength bearing steel used in fuel cells and wind turbines was also investigated. Thermal desorption spectroscopy revealed that the chemical tribofilm generated on the wear tracks can significantly reduce the concentration of hydrogen and water in the steel substrate after rolling contact fatigue tests performed in high-temperature high-pressure conditions.
author2 Ratoi, Monica
author_facet Ratoi, Monica
Niste, Vlad
author Niste, Vlad
author_sort Niste, Vlad
title WS2 nanoparticles as lubricant additives
title_short WS2 nanoparticles as lubricant additives
title_full WS2 nanoparticles as lubricant additives
title_fullStr WS2 nanoparticles as lubricant additives
title_full_unstemmed WS2 nanoparticles as lubricant additives
title_sort ws2 nanoparticles as lubricant additives
publisher University of Southampton
publishDate 2015
url https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675170
work_keys_str_mv AT nistevlad ws2nanoparticlesaslubricantadditives
_version_ 1718729709730136064