Benzyne-platinum intermediates

The evidence for considering benzyme as a symmetric singlet with a partial ? bond between the two one-electron centres is given. Benzyne is compared with strained cyclic acetylenes and a method of stabilizing both systems as 6? complexes on a transition metal is illustrated. Other reactions possibly...

Full description

Bibliographic Details
Main Author: Graveling, Frederick James
Published: University of Leicester 1969
Subjects:
540
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.673962
id ndltd-bl.uk-oai-ethos.bl.uk-673962
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-6739622016-06-21T03:32:13ZBenzyne-platinum intermediatesGraveling, Frederick James1969The evidence for considering benzyme as a symmetric singlet with a partial ? bond between the two one-electron centres is given. Benzyne is compared with strained cyclic acetylenes and a method of stabilizing both systems as 6? complexes on a transition metal is illustrated. Other reactions possibly involving benzyne-metal complexes are reviewed. Two new benzyne precursors are described; the sodium and lithium salts of 1-(toluene-p-sulphonamido) benzotriazole (Ia, Ib), and (1-benzotriazolyl) iminotriphenylphosphorane (II) give benzyne on photolysis. For comparison the new cyclohexyne and cycloheptyne precursors, (4,5-tetramethylene-l-triazolyl) iminotriphenylphosphorane (III) and (4,5-pentamethylene-l-triazolyl) iminotriphenylphosphorane (IV) were prepared. It was also found that photolysis at room temperature of cycloheptenocyclopropenone (V) gave cycloheptyne. 1,2,3-Benzothiadiazole-1,1-dioxides(VI) and benzene- diazonium-2-csrboxylates (VII) were used as benzyne precursors with tetrakis (triphenylphosphine) platinum(O) (VIII) to prepare benzyne-platinum complexes. Benzyne-platinum intermediates are postulated with 1,2,3-benzothiadiazole-1,1-dioxides in refluxing ether - benzene where cyclotrimerisation of benzyne to triphenylenes (not observed in the absence of platinum) occurs. In cold benzene, 1,2,3-benzothiadiazole-1,1-dioxide is trapped by tetrakis (triphenylphosphine)platinum(O) before it decomposes to benzyne to give the adduct (IX), which when irradiated, is also a new benzyne precursor. The reaction with benzenediazonium -2-carboxylates gives carboxylato-platinum complexes (X) which are not benzyne precursors and no cyclotrimerisation of benzyne was detected. The oxidation of l-aminobenzotriazole (XI) in the presence of tetrakis(triphenylphosphine)platinum(O) did not lead to a benzyne-platinum complex and benzyne-platinum intermediates do not appear to be involved. Furthermore the above, new, non-oxidative routes to benzyne with tetrakis (triphenylphosphine) platinum(O) gave no evidence for benzyne-platinum complexes. Analogous cycloalkyne precursors were also explored as routes to cycloalkyne- platinum complexes and cyclooctynebis (triphenylphosphine)- platinum (XII) was isolated. The lead tetraacetate oxidation of 1-aminobenzotriazole in the presence of ethylenebis(triphenylphosphine)platinum (XIII) does, however, appear to give a benzyne-platinum complex which is stable for 10 minutes in solution. Benzyne was again cyclotrimerised to triphenylene in this reaction. Other attempts to synthesise a benzyne-platinum complex and to stabilize an antiaromatic compound with zerovalent platinum are briefly described.540University of Leicesterhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.673962http://hdl.handle.net/2381/33697Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 540
spellingShingle 540
Graveling, Frederick James
Benzyne-platinum intermediates
description The evidence for considering benzyme as a symmetric singlet with a partial ? bond between the two one-electron centres is given. Benzyne is compared with strained cyclic acetylenes and a method of stabilizing both systems as 6? complexes on a transition metal is illustrated. Other reactions possibly involving benzyne-metal complexes are reviewed. Two new benzyne precursors are described; the sodium and lithium salts of 1-(toluene-p-sulphonamido) benzotriazole (Ia, Ib), and (1-benzotriazolyl) iminotriphenylphosphorane (II) give benzyne on photolysis. For comparison the new cyclohexyne and cycloheptyne precursors, (4,5-tetramethylene-l-triazolyl) iminotriphenylphosphorane (III) and (4,5-pentamethylene-l-triazolyl) iminotriphenylphosphorane (IV) were prepared. It was also found that photolysis at room temperature of cycloheptenocyclopropenone (V) gave cycloheptyne. 1,2,3-Benzothiadiazole-1,1-dioxides(VI) and benzene- diazonium-2-csrboxylates (VII) were used as benzyne precursors with tetrakis (triphenylphosphine) platinum(O) (VIII) to prepare benzyne-platinum complexes. Benzyne-platinum intermediates are postulated with 1,2,3-benzothiadiazole-1,1-dioxides in refluxing ether - benzene where cyclotrimerisation of benzyne to triphenylenes (not observed in the absence of platinum) occurs. In cold benzene, 1,2,3-benzothiadiazole-1,1-dioxide is trapped by tetrakis (triphenylphosphine)platinum(O) before it decomposes to benzyne to give the adduct (IX), which when irradiated, is also a new benzyne precursor. The reaction with benzenediazonium -2-carboxylates gives carboxylato-platinum complexes (X) which are not benzyne precursors and no cyclotrimerisation of benzyne was detected. The oxidation of l-aminobenzotriazole (XI) in the presence of tetrakis(triphenylphosphine)platinum(O) did not lead to a benzyne-platinum complex and benzyne-platinum intermediates do not appear to be involved. Furthermore the above, new, non-oxidative routes to benzyne with tetrakis (triphenylphosphine) platinum(O) gave no evidence for benzyne-platinum complexes. Analogous cycloalkyne precursors were also explored as routes to cycloalkyne- platinum complexes and cyclooctynebis (triphenylphosphine)- platinum (XII) was isolated. The lead tetraacetate oxidation of 1-aminobenzotriazole in the presence of ethylenebis(triphenylphosphine)platinum (XIII) does, however, appear to give a benzyne-platinum complex which is stable for 10 minutes in solution. Benzyne was again cyclotrimerised to triphenylene in this reaction. Other attempts to synthesise a benzyne-platinum complex and to stabilize an antiaromatic compound with zerovalent platinum are briefly described.
author Graveling, Frederick James
author_facet Graveling, Frederick James
author_sort Graveling, Frederick James
title Benzyne-platinum intermediates
title_short Benzyne-platinum intermediates
title_full Benzyne-platinum intermediates
title_fullStr Benzyne-platinum intermediates
title_full_unstemmed Benzyne-platinum intermediates
title_sort benzyne-platinum intermediates
publisher University of Leicester
publishDate 1969
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.673962
work_keys_str_mv AT gravelingfrederickjames benzyneplatinumintermediates
_version_ 1718313562507575296