Evaluation of detector array technology for the verification of advanced intensity-modulated radiotherapy

Purpose: Quality assurance (QA) for intensity modulated radiotherapy (IMRT) has evolved substantially. In recent years, various ionization chamber or diode detector arrays have become commercially available, allowing pre-treatment absolute dose verification with near real-time results. This has led...

Full description

Bibliographic Details
Main Author: Hussien, Mohammad
Other Authors: Nisbet, A.; Clark, C. H.
Published: University of Surrey 2015
Subjects:
530
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667607
id ndltd-bl.uk-oai-ethos.bl.uk-667607
record_format oai_dc
collection NDLTD
sources NDLTD
topic 530
spellingShingle 530
Hussien, Mohammad
Evaluation of detector array technology for the verification of advanced intensity-modulated radiotherapy
description Purpose: Quality assurance (QA) for intensity modulated radiotherapy (IMRT) has evolved substantially. In recent years, various ionization chamber or diode detector arrays have become commercially available, allowing pre-treatment absolute dose verification with near real-time results. This has led to a wide uptake of this technology to replace point dose and film dosimetry and to facilitate QA streamlining. However, arrays are limited by their spatial resolution giving rise to concerns about their response to clinically relevant deviations. The common factor in all commercial array systems is the reliance on the gamma index (γ) method to provide the quantitative evaluation of the measured dose distribution against the Treatment Planning System (TPS) calculated dose distribution. The mathematical definition of the gamma index presents computational challenges that can cause a variation in the calculation in different systems. The purpose of this thesis was to evaluate the suitability of detector array systems, combined with their implementation of the gamma index, in the verification and dosimetry audit of advanced IMRT. Method: The response of various commercial detector array systems (Delta4®, ArcCHECK®, and the PTW 2D-Array seven29™ and OCTAVIUS II™ phantom combination, Gafchromic® EBT2 and composite EPID measurements) to simulated deliberate changes in clinical IMRT and VMAT plans was evaluated. The variability of the gamma index calculation in the different systems was also evaluated by comparing against a bespoke Matlab-based gamma index analysis software. A novel methodology for using a commercial detector array in a dosimetry audit of rotational radiotherapy was then developed. Comparison was made between measurements using the detector array and those performed using ionization chambers, alanine and radiochromic film. The methodology was developed as part of the development of a national audit of rotational radiotherapy. Ten cancer centres were asked to create a rotational radiotherapy treatment plan for a three-dimensional treatment-planning-system (3DTPS) test and audited. Phantom measurements using a commercial 2D ionization chamber (IC) array were compared with measurements using 0.125cm3 ion chamber, Gafchromic film and alanine pellets in the same plane. Relative and absolute gamma index (γ) comparisons were made for Gafchromic film and 2D-Array planes respectively. A methodology for prospectively deriving appropriate gamma index acceptance criteria for detector array systems, via simulation of deliberate changes and receiver operator characteristic (ROC) analysis, has been developed. Results: In the event of clinically relevant delivery introduced changes, the detector array systems evaluated are able to detect some of these changes if suitable gamma index passing criteria, such as 2%/2mm, are used. Different computational approaches can produce variability in the calculation of the gamma index between different software implementations. For the same passing criteria, different devices and software combinations exhibit varying levels of agreement with the Matlab predicted gamma index analysis. This work has found that it is suitable to use a detector array in a dosimetry audit of rotational radiotherapy in place of standard systems of dosimetry such as ion chambers, alanine and film. Comparisons between individual detectors within the 2D-Array against the corresponding ion chamber and alanine measurement showed a statistically significant concordance correlation coefficient (ρc>0.998, p<0.001) with mean difference of -1.1%±1.1% and -0.8%±1.1%, respectively, in a high dose PTV. In the γ comparison between the 2D-Array and film it was found that the 2D-Array was more likely to fail in planes where there was a dose discrepancy due to the absolute analysis performed. A follow-up analysis of the library of measured data during the audit found that additional metrics such as the mean gamma index or dose differences over regions of interest can be gleaned from the measured dose distributions. Conclusions: It is important to understand the response and limitations of the gamma index analysis combined with the equipment and software in use. For the same pass-rate criteria, different devices and software combinations exhibit varying levels of agreement with the predicted γ analysis. It has been found that using a commercial detector array for a dosimetry audit of rotational radiotherapy is suitable in place of standard systems of dosimetry. A methodology for being able to prospectively ascertain appropriate gamma index acceptance criteria for the detector array system in use, via simulation of deliberate changes and ROC analysis, has been developed. It has been shown that setting appropriate tolerances can be achieved and should be performed as the methodology takes into account the configuration of the commercial system as well as the software implementation of the gamma index.
author2 Nisbet, A.; Clark, C. H.
author_facet Nisbet, A.; Clark, C. H.
Hussien, Mohammad
author Hussien, Mohammad
author_sort Hussien, Mohammad
title Evaluation of detector array technology for the verification of advanced intensity-modulated radiotherapy
title_short Evaluation of detector array technology for the verification of advanced intensity-modulated radiotherapy
title_full Evaluation of detector array technology for the verification of advanced intensity-modulated radiotherapy
title_fullStr Evaluation of detector array technology for the verification of advanced intensity-modulated radiotherapy
title_full_unstemmed Evaluation of detector array technology for the verification of advanced intensity-modulated radiotherapy
title_sort evaluation of detector array technology for the verification of advanced intensity-modulated radiotherapy
publisher University of Surrey
publishDate 2015
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667607
work_keys_str_mv AT hussienmohammad evaluationofdetectorarraytechnologyfortheverificationofadvancedintensitymodulatedradiotherapy
_version_ 1718371955572211712
spelling ndltd-bl.uk-oai-ethos.bl.uk-6676072016-08-04T03:52:56ZEvaluation of detector array technology for the verification of advanced intensity-modulated radiotherapyHussien, MohammadNisbet, A.; Clark, C. H.2015Purpose: Quality assurance (QA) for intensity modulated radiotherapy (IMRT) has evolved substantially. In recent years, various ionization chamber or diode detector arrays have become commercially available, allowing pre-treatment absolute dose verification with near real-time results. This has led to a wide uptake of this technology to replace point dose and film dosimetry and to facilitate QA streamlining. However, arrays are limited by their spatial resolution giving rise to concerns about their response to clinically relevant deviations. The common factor in all commercial array systems is the reliance on the gamma index (γ) method to provide the quantitative evaluation of the measured dose distribution against the Treatment Planning System (TPS) calculated dose distribution. The mathematical definition of the gamma index presents computational challenges that can cause a variation in the calculation in different systems. The purpose of this thesis was to evaluate the suitability of detector array systems, combined with their implementation of the gamma index, in the verification and dosimetry audit of advanced IMRT. Method: The response of various commercial detector array systems (Delta4®, ArcCHECK®, and the PTW 2D-Array seven29™ and OCTAVIUS II™ phantom combination, Gafchromic® EBT2 and composite EPID measurements) to simulated deliberate changes in clinical IMRT and VMAT plans was evaluated. The variability of the gamma index calculation in the different systems was also evaluated by comparing against a bespoke Matlab-based gamma index analysis software. A novel methodology for using a commercial detector array in a dosimetry audit of rotational radiotherapy was then developed. Comparison was made between measurements using the detector array and those performed using ionization chambers, alanine and radiochromic film. The methodology was developed as part of the development of a national audit of rotational radiotherapy. Ten cancer centres were asked to create a rotational radiotherapy treatment plan for a three-dimensional treatment-planning-system (3DTPS) test and audited. Phantom measurements using a commercial 2D ionization chamber (IC) array were compared with measurements using 0.125cm3 ion chamber, Gafchromic film and alanine pellets in the same plane. Relative and absolute gamma index (γ) comparisons were made for Gafchromic film and 2D-Array planes respectively. A methodology for prospectively deriving appropriate gamma index acceptance criteria for detector array systems, via simulation of deliberate changes and receiver operator characteristic (ROC) analysis, has been developed. Results: In the event of clinically relevant delivery introduced changes, the detector array systems evaluated are able to detect some of these changes if suitable gamma index passing criteria, such as 2%/2mm, are used. Different computational approaches can produce variability in the calculation of the gamma index between different software implementations. For the same passing criteria, different devices and software combinations exhibit varying levels of agreement with the Matlab predicted gamma index analysis. This work has found that it is suitable to use a detector array in a dosimetry audit of rotational radiotherapy in place of standard systems of dosimetry such as ion chambers, alanine and film. Comparisons between individual detectors within the 2D-Array against the corresponding ion chamber and alanine measurement showed a statistically significant concordance correlation coefficient (ρc>0.998, p<0.001) with mean difference of -1.1%±1.1% and -0.8%±1.1%, respectively, in a high dose PTV. In the γ comparison between the 2D-Array and film it was found that the 2D-Array was more likely to fail in planes where there was a dose discrepancy due to the absolute analysis performed. A follow-up analysis of the library of measured data during the audit found that additional metrics such as the mean gamma index or dose differences over regions of interest can be gleaned from the measured dose distributions. Conclusions: It is important to understand the response and limitations of the gamma index analysis combined with the equipment and software in use. For the same pass-rate criteria, different devices and software combinations exhibit varying levels of agreement with the predicted γ analysis. It has been found that using a commercial detector array for a dosimetry audit of rotational radiotherapy is suitable in place of standard systems of dosimetry. A methodology for being able to prospectively ascertain appropriate gamma index acceptance criteria for the detector array system in use, via simulation of deliberate changes and ROC analysis, has been developed. It has been shown that setting appropriate tolerances can be achieved and should be performed as the methodology takes into account the configuration of the commercial system as well as the software implementation of the gamma index.530University of Surreyhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667607http://epubs.surrey.ac.uk/808445/Electronic Thesis or Dissertation