Electrochemical performance and compatibility of La2NiO4+δ electrode material with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte for solid oxide electrolysis

La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) is an oxygen ion conducting electrolyte material widely used in solid oxide fuel cells (SOFC). La2NiO4+δ (LNO) is a mixed ionic-electronic conducting layered perovskite with K2NiF4 type structure which conducts oxygen ions via oxygen interstitials. LNO has shown promi...

Full description

Bibliographic Details
Main Author: Fawcett, Lydia
Other Authors: Skinner, Stephen; Kilner, John
Published: Imperial College London 2014
Subjects:
543
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.656561
id ndltd-bl.uk-oai-ethos.bl.uk-656561
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-6565612017-04-20T03:22:07ZElectrochemical performance and compatibility of La2NiO4+δ electrode material with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte for solid oxide electrolysisFawcett, LydiaSkinner, Stephen; Kilner, John2014La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) is an oxygen ion conducting electrolyte material widely used in solid oxide fuel cells (SOFC). La2NiO4+δ (LNO) is a mixed ionic-electronic conducting layered perovskite with K2NiF4 type structure which conducts oxygen ions via oxygen interstitials. LNO has shown promising results as an SOFC electrode in the literature. In this work the compatibility and performance of LNO electrodes on the LSGM electrolyte material for solid oxide electrolysis cell (SOEC) is investigated. The materials were characterised as SOEC/SOFC cells by symmetrical and three electrode electrochemical measurements using Electrochemical Impedance Spectroscopy (EIS). Conductivity and ASR values were obtained in the temperature range 300-800°C with varying atmospheres of pH2O and pO2. The cells were also subjected to varied potential bias, mimicking fuel cell or electrolysis use. Enhancement of LNO performance was observed with the application of potential bias in both anodic and cathodic mode of operation in all atmospheres with the exception of cathodic bias in pO2 = 6.5x10-3 atm. In ambient air at 800°C LNO ASRs were 2.82Ω.cm2, 1.83Ω.cm2 and 1.37Ω.cm2 in OCV, +1000mV bias and -1000mV bias respectively. In low pO2 at 800°C LNO ASRs were 9.17Ω.cm2, 1.74Ω.cm2 and 456.9Ω.cm2 in OCV, +1000mV bias and -1000mV bias respectively. The increase in ASR with negative potential bias in low pO2 is believed to be caused by an increase in mass transport and charge transfer impedance responses. Material stability was confirmed using X-Ray Diffraction (XRD), in-situ high temperature pH2O and pO2 XRD. In-situ XRD displayed single phase materials with no observable reactivity in the conditions tested. Scanning Electron Microscopy images of cells tested by EIS in all atmospheres displayed no microstructure degradation except for those cells tested in a humid atmosphere which display a regular pattern of degradation on the LNO surface attributed to reaction with the Pt mesh current collector.543Imperial College Londonhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.656561http://hdl.handle.net/10044/1/24667Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 543
spellingShingle 543
Fawcett, Lydia
Electrochemical performance and compatibility of La2NiO4+δ electrode material with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte for solid oxide electrolysis
description La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) is an oxygen ion conducting electrolyte material widely used in solid oxide fuel cells (SOFC). La2NiO4+δ (LNO) is a mixed ionic-electronic conducting layered perovskite with K2NiF4 type structure which conducts oxygen ions via oxygen interstitials. LNO has shown promising results as an SOFC electrode in the literature. In this work the compatibility and performance of LNO electrodes on the LSGM electrolyte material for solid oxide electrolysis cell (SOEC) is investigated. The materials were characterised as SOEC/SOFC cells by symmetrical and three electrode electrochemical measurements using Electrochemical Impedance Spectroscopy (EIS). Conductivity and ASR values were obtained in the temperature range 300-800°C with varying atmospheres of pH2O and pO2. The cells were also subjected to varied potential bias, mimicking fuel cell or electrolysis use. Enhancement of LNO performance was observed with the application of potential bias in both anodic and cathodic mode of operation in all atmospheres with the exception of cathodic bias in pO2 = 6.5x10-3 atm. In ambient air at 800°C LNO ASRs were 2.82Ω.cm2, 1.83Ω.cm2 and 1.37Ω.cm2 in OCV, +1000mV bias and -1000mV bias respectively. In low pO2 at 800°C LNO ASRs were 9.17Ω.cm2, 1.74Ω.cm2 and 456.9Ω.cm2 in OCV, +1000mV bias and -1000mV bias respectively. The increase in ASR with negative potential bias in low pO2 is believed to be caused by an increase in mass transport and charge transfer impedance responses. Material stability was confirmed using X-Ray Diffraction (XRD), in-situ high temperature pH2O and pO2 XRD. In-situ XRD displayed single phase materials with no observable reactivity in the conditions tested. Scanning Electron Microscopy images of cells tested by EIS in all atmospheres displayed no microstructure degradation except for those cells tested in a humid atmosphere which display a regular pattern of degradation on the LNO surface attributed to reaction with the Pt mesh current collector.
author2 Skinner, Stephen; Kilner, John
author_facet Skinner, Stephen; Kilner, John
Fawcett, Lydia
author Fawcett, Lydia
author_sort Fawcett, Lydia
title Electrochemical performance and compatibility of La2NiO4+δ electrode material with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte for solid oxide electrolysis
title_short Electrochemical performance and compatibility of La2NiO4+δ electrode material with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte for solid oxide electrolysis
title_full Electrochemical performance and compatibility of La2NiO4+δ electrode material with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte for solid oxide electrolysis
title_fullStr Electrochemical performance and compatibility of La2NiO4+δ electrode material with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte for solid oxide electrolysis
title_full_unstemmed Electrochemical performance and compatibility of La2NiO4+δ electrode material with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte for solid oxide electrolysis
title_sort electrochemical performance and compatibility of la2nio4+δ electrode material with la0.8sr0.2ga0.8mg0.2o3-δ electrolyte for solid oxide electrolysis
publisher Imperial College London
publishDate 2014
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.656561
work_keys_str_mv AT fawcettlydia electrochemicalperformanceandcompatibilityofla2nio4delectrodematerialwithla08sr02ga08mg02o3delectrolyteforsolidoxideelectrolysis
_version_ 1718440167201570816