Glasses for energy applications : atomic scale network structure and properties

Glass is used for the vitrification of high level waste that results from the reprocessing of spent nuclear fuel. A better understanding of the structure of vitrified wastes may lead to insights into the observed compositional flexibility. It is also the starting point for studies of the self-irradi...

Full description

Bibliographic Details
Main Author: Stechert, Thorsten Roland
Other Authors: Grimes, Robin
Published: Imperial College London 2013
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.634097
id ndltd-bl.uk-oai-ethos.bl.uk-634097
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-6340972017-02-17T03:22:56ZGlasses for energy applications : atomic scale network structure and propertiesStechert, Thorsten RolandGrimes, Robin2013Glass is used for the vitrification of high level waste that results from the reprocessing of spent nuclear fuel. A better understanding of the structure of vitrified wastes may lead to insights into the observed compositional flexibility. It is also the starting point for studies of the self-irradiation behaviour of glasses under long-term repository conditions. Appropriate models need to be employed for the study of glasses when using molecular dynamics. The nature of nuclear waste necessitates an accurate structure prediction for a range of compositions and parameters. To this end, the suitability of established potential sets have been compared. The established potential models were used to investigate the structure of zinc containing sodium silicate glass. Once validated, this structure was used to investigate structural changes observed during simulated self-irradiation, where significant changes were observed on the atomic scale. This will provide the basis for further studies of radiation damage, glass-crystal interfaces and damage across glass-crystal interfaces. In order to further enhance the understanding of potential models, a novel glass of composition LiAlF4 has been successfully described, and may become relevant in the future as a thin film coating in Li-ion batteries.620.1Imperial College Londonhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.634097http://hdl.handle.net/10044/1/18940Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 620.1
spellingShingle 620.1
Stechert, Thorsten Roland
Glasses for energy applications : atomic scale network structure and properties
description Glass is used for the vitrification of high level waste that results from the reprocessing of spent nuclear fuel. A better understanding of the structure of vitrified wastes may lead to insights into the observed compositional flexibility. It is also the starting point for studies of the self-irradiation behaviour of glasses under long-term repository conditions. Appropriate models need to be employed for the study of glasses when using molecular dynamics. The nature of nuclear waste necessitates an accurate structure prediction for a range of compositions and parameters. To this end, the suitability of established potential sets have been compared. The established potential models were used to investigate the structure of zinc containing sodium silicate glass. Once validated, this structure was used to investigate structural changes observed during simulated self-irradiation, where significant changes were observed on the atomic scale. This will provide the basis for further studies of radiation damage, glass-crystal interfaces and damage across glass-crystal interfaces. In order to further enhance the understanding of potential models, a novel glass of composition LiAlF4 has been successfully described, and may become relevant in the future as a thin film coating in Li-ion batteries.
author2 Grimes, Robin
author_facet Grimes, Robin
Stechert, Thorsten Roland
author Stechert, Thorsten Roland
author_sort Stechert, Thorsten Roland
title Glasses for energy applications : atomic scale network structure and properties
title_short Glasses for energy applications : atomic scale network structure and properties
title_full Glasses for energy applications : atomic scale network structure and properties
title_fullStr Glasses for energy applications : atomic scale network structure and properties
title_full_unstemmed Glasses for energy applications : atomic scale network structure and properties
title_sort glasses for energy applications : atomic scale network structure and properties
publisher Imperial College London
publishDate 2013
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.634097
work_keys_str_mv AT stechertthorstenroland glassesforenergyapplicationsatomicscalenetworkstructureandproperties
_version_ 1718414477449232384