Automated planning & scheduling for earth observation constellations : an ant colony approach
Missions involving multiple spacecraft have become of great interest in the last decade as they offer a number of scientific and engineering advantages. Though already largely adopted for communication, geo-location (GPS) and meteorology purposes, only recently this paradigm is showing its potential...
Main Author: | |
---|---|
Published: |
University of Surrey
2013
|
Subjects: | |
Online Access: | http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608374 |
id |
ndltd-bl.uk-oai-ethos.bl.uk-608374 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-bl.uk-oai-ethos.bl.uk-6083742015-03-20T05:29:36ZAutomated planning & scheduling for earth observation constellations : an ant colony approachIacopino, Claudio2013Missions involving multiple spacecraft have become of great interest in the last decade as they offer a number of scientific and engineering advantages. Though already largely adopted for communication, geo-location (GPS) and meteorology purposes, only recently this paradigm is showing its potential benefits for Earth Observation and Space Exploration. Multiple platforms are crucial in the context of global monitoring and disaster management. The Global Monitoring for Environment and Security - GMES or the Disaster Monitoring constellation arc the first examples of this trend. From the mission planning point of view, the use of multiple platforms is opening new challenges to the automated planning & scheduling systems whose aim is gaining maximum value from the constellation by optimising the use of on-board resources and by coordinating the different spacecraft, Hence, new approaches arc needed to handle this level of complexity, The main goal of this research is the construction of a _ground-based automated planning & scheduling system for the imaging campaign of an Earth Observation constellation. The target mission is the Disaster Monitoring Constellation, which requires a system that is responsive to the asynchronous requests of different user groups with different priority levels, Multi agent sY8tems represent a fruitful approach to model such a dynamic context, The novelty of this project is to apply nature-inspired techniques, such as stigmergy, to achieve optimisation and coordination, This mechanism offers high-level of adaptability and 8calnbility allowing the system to find an efficient schedule at global -level due to the collaboration of alt the agents, A key novelty of this project is the development of a theoretical framework to model the self-organising long-term system's behaviours. This model is able to describe the architecture us a dynamical system. It offers new insights which are the basis of a new algorithm which regulates the trade-off of exploration/exploitation via changes in the system's stability. The theoretical model, as well as the algorithm, has been extended in order to include a coordination mechanism which is required by the multiple platform scenario. An empirical evaluation has been used to validate the system's capabilities in optimisation, adaptability and scalability in the case of dynamic problems for single and multiple spacecraft. Lastly, the transferability of the system developed has been demonstrated to different contexts outside the Earth Observation field such as the ESA GENSO (Global Educational Network for Satellite Operations) network. This is a ground station network sharing similar requirements with the Earth Observation constellation scenario.526.640285University of Surreyhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608374Electronic Thesis or Dissertation |
collection |
NDLTD |
sources |
NDLTD |
topic |
526.640285 |
spellingShingle |
526.640285 Iacopino, Claudio Automated planning & scheduling for earth observation constellations : an ant colony approach |
description |
Missions involving multiple spacecraft have become of great interest in the last decade as they offer a number of scientific and engineering advantages. Though already largely adopted for communication, geo-location (GPS) and meteorology purposes, only recently this paradigm is showing its potential benefits for Earth Observation and Space Exploration. Multiple platforms are crucial in the context of global monitoring and disaster management. The Global Monitoring for Environment and Security - GMES or the Disaster Monitoring constellation arc the first examples of this trend. From the mission planning point of view, the use of multiple platforms is opening new challenges to the automated planning & scheduling systems whose aim is gaining maximum value from the constellation by optimising the use of on-board resources and by coordinating the different spacecraft, Hence, new approaches arc needed to handle this level of complexity, The main goal of this research is the construction of a _ground-based automated planning & scheduling system for the imaging campaign of an Earth Observation constellation. The target mission is the Disaster Monitoring Constellation, which requires a system that is responsive to the asynchronous requests of different user groups with different priority levels, Multi agent sY8tems represent a fruitful approach to model such a dynamic context, The novelty of this project is to apply nature-inspired techniques, such as stigmergy, to achieve optimisation and coordination, This mechanism offers high-level of adaptability and 8calnbility allowing the system to find an efficient schedule at global -level due to the collaboration of alt the agents, A key novelty of this project is the development of a theoretical framework to model the self-organising long-term system's behaviours. This model is able to describe the architecture us a dynamical system. It offers new insights which are the basis of a new algorithm which regulates the trade-off of exploration/exploitation via changes in the system's stability. The theoretical model, as well as the algorithm, has been extended in order to include a coordination mechanism which is required by the multiple platform scenario. An empirical evaluation has been used to validate the system's capabilities in optimisation, adaptability and scalability in the case of dynamic problems for single and multiple spacecraft. Lastly, the transferability of the system developed has been demonstrated to different contexts outside the Earth Observation field such as the ESA GENSO (Global Educational Network for Satellite Operations) network. This is a ground station network sharing similar requirements with the Earth Observation constellation scenario. |
author |
Iacopino, Claudio |
author_facet |
Iacopino, Claudio |
author_sort |
Iacopino, Claudio |
title |
Automated planning & scheduling for earth observation constellations : an ant colony approach |
title_short |
Automated planning & scheduling for earth observation constellations : an ant colony approach |
title_full |
Automated planning & scheduling for earth observation constellations : an ant colony approach |
title_fullStr |
Automated planning & scheduling for earth observation constellations : an ant colony approach |
title_full_unstemmed |
Automated planning & scheduling for earth observation constellations : an ant colony approach |
title_sort |
automated planning & scheduling for earth observation constellations : an ant colony approach |
publisher |
University of Surrey |
publishDate |
2013 |
url |
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608374 |
work_keys_str_mv |
AT iacopinoclaudio automatedplanningschedulingforearthobservationconstellationsanantcolonyapproach |
_version_ |
1716792217134170112 |