Control of distributed parameter systems

Many industrial processes are shown to have a common underlying form involving transport of energy and matter by flow and dispersion or diffusion. Mathematical models using the Laplace transform and root-locus methods produce space parameter dependant transfer functions, and explain resonance like p...

Full description

Bibliographic Details
Main Author: McCann, Michael John
Other Authors: Westcott, J. H.
Published: Imperial College London 1963
Subjects:
660
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.602254
id ndltd-bl.uk-oai-ethos.bl.uk-602254
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-6022542019-04-03T06:25:20ZControl of distributed parameter systemsMcCann, Michael JohnWestcott, J. H.1963Many industrial processes are shown to have a common underlying form involving transport of energy and matter by flow and dispersion or diffusion. Mathematical models using the Laplace transform and root-locus methods produce space parameter dependant transfer functions, and explain resonance like phenomena characteristic of distributed forcing of flow systems. Harmonic or functional analysis depends on having eigen functions for the differential operators for the system. The number of sections required for a lumped parameter model produced by spatial quantization was found (on a digital computer) to depend on the disturbances being considered and a parameter characterizing the system. A cheap, simple, special purpose electronic analogue was developed. Control design by conventional methods yields a useful standard of comparison. The absolutely optimal solutions from the calculus of variations (etc.) are shown to present major computational difficulties especially when the theory is extended to partial differential and integral equations. Practical use of sub-optimal control design methods and the analytical development of a direct feedback controller all depend on having a state-space of low dimensionality. A correlation coefficient criterion for instrumentation gives a method for specifying instrumentation for protection purposes but not for control or performance measure. Control based on instantaneous computation on a measure of state is shown to need only small amounts of instrumentation but sensitivity to parameter changes has to be taken into account. Spatially distributed control can deal with disturbances arising anywhere in the system, and sensitivity to parameter changes is reduced at the cost of greater complexity The structure of the control scheme and its instrumentation is largely determined by the spatial location of the measure or measures used for performance assessment and the relationship between spatial displacement and time delays in the distributed systems.660Imperial College Londonhttps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.602254http://hdl.handle.net/10044/1/13427Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 660
spellingShingle 660
McCann, Michael John
Control of distributed parameter systems
description Many industrial processes are shown to have a common underlying form involving transport of energy and matter by flow and dispersion or diffusion. Mathematical models using the Laplace transform and root-locus methods produce space parameter dependant transfer functions, and explain resonance like phenomena characteristic of distributed forcing of flow systems. Harmonic or functional analysis depends on having eigen functions for the differential operators for the system. The number of sections required for a lumped parameter model produced by spatial quantization was found (on a digital computer) to depend on the disturbances being considered and a parameter characterizing the system. A cheap, simple, special purpose electronic analogue was developed. Control design by conventional methods yields a useful standard of comparison. The absolutely optimal solutions from the calculus of variations (etc.) are shown to present major computational difficulties especially when the theory is extended to partial differential and integral equations. Practical use of sub-optimal control design methods and the analytical development of a direct feedback controller all depend on having a state-space of low dimensionality. A correlation coefficient criterion for instrumentation gives a method for specifying instrumentation for protection purposes but not for control or performance measure. Control based on instantaneous computation on a measure of state is shown to need only small amounts of instrumentation but sensitivity to parameter changes has to be taken into account. Spatially distributed control can deal with disturbances arising anywhere in the system, and sensitivity to parameter changes is reduced at the cost of greater complexity The structure of the control scheme and its instrumentation is largely determined by the spatial location of the measure or measures used for performance assessment and the relationship between spatial displacement and time delays in the distributed systems.
author2 Westcott, J. H.
author_facet Westcott, J. H.
McCann, Michael John
author McCann, Michael John
author_sort McCann, Michael John
title Control of distributed parameter systems
title_short Control of distributed parameter systems
title_full Control of distributed parameter systems
title_fullStr Control of distributed parameter systems
title_full_unstemmed Control of distributed parameter systems
title_sort control of distributed parameter systems
publisher Imperial College London
publishDate 1963
url https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.602254
work_keys_str_mv AT mccannmichaeljohn controlofdistributedparametersystems
_version_ 1719012265016950784