Molecular interactions of nuclear transport factor 2

In this Thesis, I describe a molecular dissection of the interaction of NTF2, with Ran and several nuclear pore proteins. To undertake these studies I first cloned and sequenced rat NTF2 cDNA, expressed the protein in bacteria, and purified it to homogeneity. NTF2 was then coupled to Sepharose beads...

Full description

Bibliographic Details
Main Author: Clarkson, W. D.
Published: University of Cambridge 1997
Subjects:
572
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597746
id ndltd-bl.uk-oai-ethos.bl.uk-597746
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-5977462015-03-20T06:06:42ZMolecular interactions of nuclear transport factor 2Clarkson, W. D.1997In this Thesis, I describe a molecular dissection of the interaction of NTF2, with Ran and several nuclear pore proteins. To undertake these studies I first cloned and sequenced rat NTF2 cDNA, expressed the protein in bacteria, and purified it to homogeneity. NTF2 was then coupled to Sepharose beads, and used to characterise in detail the molecular interactions of NTF2 with other proteins. NTF2 specifically bound both Ran-GDP and also various repeat-containing nucleoporins, including mammalian p62, and yeast Nsp1p. These interactions were verified by a variety of alternative techniques including the yeast two hybrid screen. Competition experiments indicated that NTF2 has separate binding sites for Ran-GDP and nucleoporins. In addition, I used protein engineering to construct a range of targeted NTF2 mutants based on the known structure of NTF2 to identify the regions of NTF2 involved in these interactions. Although none of the engineered mutant proteins disturbed the nucleoporin binding site on NTF2, several mutants failed to bind Ran-GDP. Using the three dimensional crystal structure of wild-type and two of NTF2 mutants, the key features of the Ran-GDP binding site on NTF2 could be identified. Furthermore, the NTF2 mutants which were unable to bind Ran, were also unable to stimulate nuclear protein import <I>in vitro</I>, and additionally one mutant was found not to be viable in place of the wild type <I>NTF2</I> gene in the yeast <I>Saccharomyces cerevisiae</I>. Taken together, these findings indicate that the NTF2-Ran interaction is essential for efficient nuclear protein import. Finally, the implications of these and other results for understanding NTF2 function during nuclear protein import are discussed.572University of Cambridgehttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597746Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 572
spellingShingle 572
Clarkson, W. D.
Molecular interactions of nuclear transport factor 2
description In this Thesis, I describe a molecular dissection of the interaction of NTF2, with Ran and several nuclear pore proteins. To undertake these studies I first cloned and sequenced rat NTF2 cDNA, expressed the protein in bacteria, and purified it to homogeneity. NTF2 was then coupled to Sepharose beads, and used to characterise in detail the molecular interactions of NTF2 with other proteins. NTF2 specifically bound both Ran-GDP and also various repeat-containing nucleoporins, including mammalian p62, and yeast Nsp1p. These interactions were verified by a variety of alternative techniques including the yeast two hybrid screen. Competition experiments indicated that NTF2 has separate binding sites for Ran-GDP and nucleoporins. In addition, I used protein engineering to construct a range of targeted NTF2 mutants based on the known structure of NTF2 to identify the regions of NTF2 involved in these interactions. Although none of the engineered mutant proteins disturbed the nucleoporin binding site on NTF2, several mutants failed to bind Ran-GDP. Using the three dimensional crystal structure of wild-type and two of NTF2 mutants, the key features of the Ran-GDP binding site on NTF2 could be identified. Furthermore, the NTF2 mutants which were unable to bind Ran, were also unable to stimulate nuclear protein import <I>in vitro</I>, and additionally one mutant was found not to be viable in place of the wild type <I>NTF2</I> gene in the yeast <I>Saccharomyces cerevisiae</I>. Taken together, these findings indicate that the NTF2-Ran interaction is essential for efficient nuclear protein import. Finally, the implications of these and other results for understanding NTF2 function during nuclear protein import are discussed.
author Clarkson, W. D.
author_facet Clarkson, W. D.
author_sort Clarkson, W. D.
title Molecular interactions of nuclear transport factor 2
title_short Molecular interactions of nuclear transport factor 2
title_full Molecular interactions of nuclear transport factor 2
title_fullStr Molecular interactions of nuclear transport factor 2
title_full_unstemmed Molecular interactions of nuclear transport factor 2
title_sort molecular interactions of nuclear transport factor 2
publisher University of Cambridge
publishDate 1997
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597746
work_keys_str_mv AT clarksonwd molecularinteractionsofnucleartransportfactor2
_version_ 1716795492228136960