Root's and Rost's embeddings : construction, optimality and applications to variance options

Root’s solution (Root [1969]) to the Skorokhod embedding problem can be described as the first hitting time of a space-time process (Xt, t) on a so-called barrier, charac- terised by certain properties, such that the stopped underlying process X has a given distribution. Recent work of Dupire [2005]...

Full description

Bibliographic Details
Main Author: Wang, Jiajie
Other Authors: Cox, Alexander
Published: University of Bath 2011
Subjects:
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582546
id ndltd-bl.uk-oai-ethos.bl.uk-582546
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-5825462019-03-14T03:24:50ZRoot's and Rost's embeddings : construction, optimality and applications to variance optionsWang, JiajieCox, Alexander2011Root’s solution (Root [1969]) to the Skorokhod embedding problem can be described as the first hitting time of a space-time process (Xt, t) on a so-called barrier, charac- terised by certain properties, such that the stopped underlying process X has a given distribution. Recent work of Dupire [2005] and Carr and Lee [2010] has highlighted the importance of understanding the Root’s solution for the model-independent hedging of variance options. We consider the problem of finding Root’s solutions when the underlying process is a time-homogeneous diffusion with a given initial distribution in one dimension. We are interested in constructing Root’s solution by partial differential equations. We begin by showing that, under some mild conditions, constructing Root’s solution is equiv- alent to solving a specialized parabolic free boundary problem in the case where the underlying process is a Brownian motion starting at 0. This result is then extended to time-homogeneous diffusions. Replacing some conditions needed in the free boundary construction, we then also consider the construction of Root’s solutions by variational inequalities. Finally we consider the optimality and applications of Root’s solutions. Unlike the existing proof of optimality (Rost [1976]), which relies on potential theory, an alternative proof is given by finding a path-wise inequality which has an impor- tant application for the construction of subhedging strategies in the financial context. In addition, we also consider these questions, construction and optimality, for Rost’s solution, which is also known as the reverse of the Root’s solution.512.94University of Bathhttps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582546Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 512.94
spellingShingle 512.94
Wang, Jiajie
Root's and Rost's embeddings : construction, optimality and applications to variance options
description Root’s solution (Root [1969]) to the Skorokhod embedding problem can be described as the first hitting time of a space-time process (Xt, t) on a so-called barrier, charac- terised by certain properties, such that the stopped underlying process X has a given distribution. Recent work of Dupire [2005] and Carr and Lee [2010] has highlighted the importance of understanding the Root’s solution for the model-independent hedging of variance options. We consider the problem of finding Root’s solutions when the underlying process is a time-homogeneous diffusion with a given initial distribution in one dimension. We are interested in constructing Root’s solution by partial differential equations. We begin by showing that, under some mild conditions, constructing Root’s solution is equiv- alent to solving a specialized parabolic free boundary problem in the case where the underlying process is a Brownian motion starting at 0. This result is then extended to time-homogeneous diffusions. Replacing some conditions needed in the free boundary construction, we then also consider the construction of Root’s solutions by variational inequalities. Finally we consider the optimality and applications of Root’s solutions. Unlike the existing proof of optimality (Rost [1976]), which relies on potential theory, an alternative proof is given by finding a path-wise inequality which has an impor- tant application for the construction of subhedging strategies in the financial context. In addition, we also consider these questions, construction and optimality, for Rost’s solution, which is also known as the reverse of the Root’s solution.
author2 Cox, Alexander
author_facet Cox, Alexander
Wang, Jiajie
author Wang, Jiajie
author_sort Wang, Jiajie
title Root's and Rost's embeddings : construction, optimality and applications to variance options
title_short Root's and Rost's embeddings : construction, optimality and applications to variance options
title_full Root's and Rost's embeddings : construction, optimality and applications to variance options
title_fullStr Root's and Rost's embeddings : construction, optimality and applications to variance options
title_full_unstemmed Root's and Rost's embeddings : construction, optimality and applications to variance options
title_sort root's and rost's embeddings : construction, optimality and applications to variance options
publisher University of Bath
publishDate 2011
url https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582546
work_keys_str_mv AT wangjiajie rootsandrostsembeddingsconstructionoptimalityandapplicationstovarianceoptions
_version_ 1719002501000200192