Investigating the influence of aluminium adjuvant on antigen presentation in vitro and T cell responses in vivo

Aluminium adjuvants (Alum) are the only widely approved adjuvants used in human vaccines, although their mechanism of action remains controversial. It is generally accepted that adjuvants mediate their effects on the adaptive immune system cells via innate antigen presenting cells (APCs), in particu...

Full description

Bibliographic Details
Main Author: Ghimire, Tirth Raj
Published: University of Strathclyde 2012
Subjects:
610
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.576336
id ndltd-bl.uk-oai-ethos.bl.uk-576336
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-5763362015-12-03T03:52:41ZInvestigating the influence of aluminium adjuvant on antigen presentation in vitro and T cell responses in vivoGhimire, Tirth Raj2012Aluminium adjuvants (Alum) are the only widely approved adjuvants used in human vaccines, although their mechanism of action remains controversial. It is generally accepted that adjuvants mediate their effects on the adaptive immune system cells via innate antigen presenting cells (APCs), in particular dendritic cells (DCs). In this study the way in which Alum modulates several steps in DC functions that lead to T cell activation to underpin adjuvant function was investigated. Using EαGFP/YAe, it was demonstrated that Alum increased the rate and magnitude of antigen internalisation in an actin-dependent manner by DCs in vitro. It was observed that Alum caused an initial reduction in presentation compared with soluble antigen, but eventually increased the magnitude and duration of antigen presentation that was associated with reduced protein degradation in DCs. Using costimulatory-independent-DO11.GFP hybridoma, it was shown that Alum enhanced presentation of antigens derived from protein as well as peptide. As well as having an antigen targeting effect on DCs, this adjuvant works by mechanism(s) other than simply antigen delivery as adsorption to Alum is dispensable for boosting their antigen presenting efficiency. Alum enhanced DC activation characterised by the enhanced expression of CD86, CD80 and OX-40ligand (L) and the production of interleukin (IL)-1β, tumour necrosis factor (TNF)-α and IL-6. In in vivo studies employing adoptive transfer of transgenic T cells and subcutaneous (s.c.) injection, Alum caused a sustained accumulation of cells leading to draining lymph node (DLN) shutdown. In conclusion, it was shown that the dynamic alterations in phenotypic and functional changes underlie enhanced DC function in response to Alum. Due to increasing demand for novel adjuvants, a clearer understanding of the mechanisms that allow these important agents to affect adaptive immune responses will make a significant contribution to the rational design of future vaccines.610University of Strathclydehttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.576336http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=18019Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 610
spellingShingle 610
Ghimire, Tirth Raj
Investigating the influence of aluminium adjuvant on antigen presentation in vitro and T cell responses in vivo
description Aluminium adjuvants (Alum) are the only widely approved adjuvants used in human vaccines, although their mechanism of action remains controversial. It is generally accepted that adjuvants mediate their effects on the adaptive immune system cells via innate antigen presenting cells (APCs), in particular dendritic cells (DCs). In this study the way in which Alum modulates several steps in DC functions that lead to T cell activation to underpin adjuvant function was investigated. Using EαGFP/YAe, it was demonstrated that Alum increased the rate and magnitude of antigen internalisation in an actin-dependent manner by DCs in vitro. It was observed that Alum caused an initial reduction in presentation compared with soluble antigen, but eventually increased the magnitude and duration of antigen presentation that was associated with reduced protein degradation in DCs. Using costimulatory-independent-DO11.GFP hybridoma, it was shown that Alum enhanced presentation of antigens derived from protein as well as peptide. As well as having an antigen targeting effect on DCs, this adjuvant works by mechanism(s) other than simply antigen delivery as adsorption to Alum is dispensable for boosting their antigen presenting efficiency. Alum enhanced DC activation characterised by the enhanced expression of CD86, CD80 and OX-40ligand (L) and the production of interleukin (IL)-1β, tumour necrosis factor (TNF)-α and IL-6. In in vivo studies employing adoptive transfer of transgenic T cells and subcutaneous (s.c.) injection, Alum caused a sustained accumulation of cells leading to draining lymph node (DLN) shutdown. In conclusion, it was shown that the dynamic alterations in phenotypic and functional changes underlie enhanced DC function in response to Alum. Due to increasing demand for novel adjuvants, a clearer understanding of the mechanisms that allow these important agents to affect adaptive immune responses will make a significant contribution to the rational design of future vaccines.
author Ghimire, Tirth Raj
author_facet Ghimire, Tirth Raj
author_sort Ghimire, Tirth Raj
title Investigating the influence of aluminium adjuvant on antigen presentation in vitro and T cell responses in vivo
title_short Investigating the influence of aluminium adjuvant on antigen presentation in vitro and T cell responses in vivo
title_full Investigating the influence of aluminium adjuvant on antigen presentation in vitro and T cell responses in vivo
title_fullStr Investigating the influence of aluminium adjuvant on antigen presentation in vitro and T cell responses in vivo
title_full_unstemmed Investigating the influence of aluminium adjuvant on antigen presentation in vitro and T cell responses in vivo
title_sort investigating the influence of aluminium adjuvant on antigen presentation in vitro and t cell responses in vivo
publisher University of Strathclyde
publishDate 2012
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.576336
work_keys_str_mv AT ghimiretirthraj investigatingtheinfluenceofaluminiumadjuvantonantigenpresentationinvitroandtcellresponsesinvivo
_version_ 1718142988167675904