Luminescent assemblies based on surface active transition metal complexes and supramolecular host-guest systems

Miniaturisation of devices and components is becoming increasingly important in the field of molecular devices. The design of multicomponent supramolecular systems that undergo photoinduced energy or electron transfer processes has been well recognised in view of its potential for development of nan...

Full description

Bibliographic Details
Main Author: Farabi, Shiva
Published: University of Birmingham 2012
Subjects:
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.566065
id ndltd-bl.uk-oai-ethos.bl.uk-566065
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-5660652019-04-03T06:38:18ZLuminescent assemblies based on surface active transition metal complexes and supramolecular host-guest systemsFarabi, Shiva2012Miniaturisation of devices and components is becoming increasingly important in the field of molecular devices. The design of multicomponent supramolecular systems that undergo photoinduced energy or electron transfer processes has been well recognised in view of its potential for development of nanosized molecular devices for solar energy conversion and components in photonic devices. Consequently research has expanded to the properties of monolayers formed from rather simple organic molecules to biological systems and metal complexes. In the present approach, surface active Ru(II) and Os(II) complexes have been designed. Their attachment to surfaces and their photophysical properties in solution, as powders and as self-assembled monolayers have been investigated. The complexes present relatively high quantum yields and long lifetimes in solution, as powders and in monolayers. The complexes have been developed further to carry \(\beta\)-cyclodextrin recognition sites in their structure. This new group of molecules opens a window into guest-host chemistry on surfaces, with the view to examining photophysical properties of supramolecular functional surface-active systems. The surface active Ru(II) and Os(II) complexes bearing \(\beta\)-cyclodextrin exhibit formation of emissive monolayers. Later Ir(III) and Ru(II) metalloguests with a specific design to bind to \(\beta\)-cyclodextrin cavity have been synthesised and the photo-induced communication between metals were investigated both in solution and on gold surface. Finally, we propose a new and efficient method of sensitising Nd(III) NIR emission by non-covalent attachment of a BODIPY dye attached to \(\beta\)-cyclodextrin (BODIPY-CD). The BODIPY-CD has been proved to be a good sensitizer for neodymium complexes. This is the first time that NIR lanthanides have been sensitised through non-covalent host-guest approach using cyclodextrin. The inclusion of the hydrophobic biphenyl and phenyl tails in the cyclodextrin has been proved by the NMR studies.541.3QD ChemistryUniversity of Birminghamhttps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.566065http://etheses.bham.ac.uk//id/eprint/3833/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 541.3
QD Chemistry
spellingShingle 541.3
QD Chemistry
Farabi, Shiva
Luminescent assemblies based on surface active transition metal complexes and supramolecular host-guest systems
description Miniaturisation of devices and components is becoming increasingly important in the field of molecular devices. The design of multicomponent supramolecular systems that undergo photoinduced energy or electron transfer processes has been well recognised in view of its potential for development of nanosized molecular devices for solar energy conversion and components in photonic devices. Consequently research has expanded to the properties of monolayers formed from rather simple organic molecules to biological systems and metal complexes. In the present approach, surface active Ru(II) and Os(II) complexes have been designed. Their attachment to surfaces and their photophysical properties in solution, as powders and as self-assembled monolayers have been investigated. The complexes present relatively high quantum yields and long lifetimes in solution, as powders and in monolayers. The complexes have been developed further to carry \(\beta\)-cyclodextrin recognition sites in their structure. This new group of molecules opens a window into guest-host chemistry on surfaces, with the view to examining photophysical properties of supramolecular functional surface-active systems. The surface active Ru(II) and Os(II) complexes bearing \(\beta\)-cyclodextrin exhibit formation of emissive monolayers. Later Ir(III) and Ru(II) metalloguests with a specific design to bind to \(\beta\)-cyclodextrin cavity have been synthesised and the photo-induced communication between metals were investigated both in solution and on gold surface. Finally, we propose a new and efficient method of sensitising Nd(III) NIR emission by non-covalent attachment of a BODIPY dye attached to \(\beta\)-cyclodextrin (BODIPY-CD). The BODIPY-CD has been proved to be a good sensitizer for neodymium complexes. This is the first time that NIR lanthanides have been sensitised through non-covalent host-guest approach using cyclodextrin. The inclusion of the hydrophobic biphenyl and phenyl tails in the cyclodextrin has been proved by the NMR studies.
author Farabi, Shiva
author_facet Farabi, Shiva
author_sort Farabi, Shiva
title Luminescent assemblies based on surface active transition metal complexes and supramolecular host-guest systems
title_short Luminescent assemblies based on surface active transition metal complexes and supramolecular host-guest systems
title_full Luminescent assemblies based on surface active transition metal complexes and supramolecular host-guest systems
title_fullStr Luminescent assemblies based on surface active transition metal complexes and supramolecular host-guest systems
title_full_unstemmed Luminescent assemblies based on surface active transition metal complexes and supramolecular host-guest systems
title_sort luminescent assemblies based on surface active transition metal complexes and supramolecular host-guest systems
publisher University of Birmingham
publishDate 2012
url https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.566065
work_keys_str_mv AT farabishiva luminescentassembliesbasedonsurfaceactivetransitionmetalcomplexesandsupramolecularhostguestsystems
_version_ 1719013459463503872