Numerical approximations to the stationary solutions of stochastic differential equations

This thesis investigates the possibility of approximating stationary solutions of stochastic differential equations using numerical methods. We consider a particular class of stochastic differential equations, which are known to generate random dynamical systems. The existence of stochastic stationa...

Full description

Bibliographic Details
Main Author: Yevik, Andrei
Published: Loughborough University 2011
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.551266
Description
Summary:This thesis investigates the possibility of approximating stationary solutions of stochastic differential equations using numerical methods. We consider a particular class of stochastic differential equations, which are known to generate random dynamical systems. The existence of stochastic stationary solution is proved using global attractor approach. Euler's numerical method, applied to the stochastic differential equation, is proved to generate a discrete random dynamical system. The existence of stationary solution is proved again using global attractor approach. At last we prove that the approximate stationary point converges in mean-square sense to the exact one as the time step of the numerical scheme diminishes.