Active vibration control of flexible bodied railway vehicles via smart structures

Future railway vehicles are going to be designed lighter in order to achieve higher speed. Suppressing the flexible modes becomes a crucial issue for improving the ride quality of the light-weight high speed railway vehicles. The concept of smart structure brings structural damping to flexible struc...

Full description

Bibliographic Details
Main Author: Zheng, Xiang
Published: Loughborough University 2011
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546753
id ndltd-bl.uk-oai-ethos.bl.uk-546753
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-5467532015-03-20T04:27:37ZActive vibration control of flexible bodied railway vehicles via smart structuresZheng, Xiang2011Future railway vehicles are going to be designed lighter in order to achieve higher speed. Suppressing the flexible modes becomes a crucial issue for improving the ride quality of the light-weight high speed railway vehicles. The concept of smart structure brings structural damping to flexible structures by integrating smart actuators and sensors onto the structure. Smart structure eliminates the need for extensive heavy mechanical actuation systems and achieves higher performance levels through their functionality for suppressing the flexible modes. Active secondary suspension is the effective conventional approach for vibration control of the railway vehicle to improve the ride quality. But its ability in suppressing the flexible modes is limited. So it is motivated to combine active structural damping for suppressing the flexible modes and the vibration control through active secondary suspension which has an effect on both rigid and flexible modes. The side-view model of the flexible-bodied railway vehicle integrated with piezoelectric actuators and sensors is derived. The procedure for selection of placement configurations of the piezoelectric actuators and sensors using structural norms is presented. Initial control studies show that the flexibility of the vehicle body will cause a considerable degradation in ride quality if it is neglected in the design model. Centralized and decentralized control strategies with various control approaches (e.g. modal control with skyhook damping, LQG/H2 control, H_infinity control and model predictive control (MPC))are applied for the combined control of active structural damping and active suspension control. The active structural damping effectively suppresses the flexible modes as a complement to the work of the active suspension control.620.3Loughborough Universityhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546753https://dspace.lboro.ac.uk/2134/9110Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 620.3
spellingShingle 620.3
Zheng, Xiang
Active vibration control of flexible bodied railway vehicles via smart structures
description Future railway vehicles are going to be designed lighter in order to achieve higher speed. Suppressing the flexible modes becomes a crucial issue for improving the ride quality of the light-weight high speed railway vehicles. The concept of smart structure brings structural damping to flexible structures by integrating smart actuators and sensors onto the structure. Smart structure eliminates the need for extensive heavy mechanical actuation systems and achieves higher performance levels through their functionality for suppressing the flexible modes. Active secondary suspension is the effective conventional approach for vibration control of the railway vehicle to improve the ride quality. But its ability in suppressing the flexible modes is limited. So it is motivated to combine active structural damping for suppressing the flexible modes and the vibration control through active secondary suspension which has an effect on both rigid and flexible modes. The side-view model of the flexible-bodied railway vehicle integrated with piezoelectric actuators and sensors is derived. The procedure for selection of placement configurations of the piezoelectric actuators and sensors using structural norms is presented. Initial control studies show that the flexibility of the vehicle body will cause a considerable degradation in ride quality if it is neglected in the design model. Centralized and decentralized control strategies with various control approaches (e.g. modal control with skyhook damping, LQG/H2 control, H_infinity control and model predictive control (MPC))are applied for the combined control of active structural damping and active suspension control. The active structural damping effectively suppresses the flexible modes as a complement to the work of the active suspension control.
author Zheng, Xiang
author_facet Zheng, Xiang
author_sort Zheng, Xiang
title Active vibration control of flexible bodied railway vehicles via smart structures
title_short Active vibration control of flexible bodied railway vehicles via smart structures
title_full Active vibration control of flexible bodied railway vehicles via smart structures
title_fullStr Active vibration control of flexible bodied railway vehicles via smart structures
title_full_unstemmed Active vibration control of flexible bodied railway vehicles via smart structures
title_sort active vibration control of flexible bodied railway vehicles via smart structures
publisher Loughborough University
publishDate 2011
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546753
work_keys_str_mv AT zhengxiang activevibrationcontrolofflexiblebodiedrailwayvehiclesviasmartstructures
_version_ 1716785119992217600