Modelling of friction stir welding

This thesis investigates the modelling of friction stir welding (FSW). FSW is a relatively new welding process where a rotating non-consumable tool is used to join two materials through high temperature deformation. The aim of the thesis is the development of a numerical model to improve process und...

Full description

Bibliographic Details
Main Author: Colegrove, Paul Andrew
Published: University of Cambridge 2004
Subjects:
671
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.541941
id ndltd-bl.uk-oai-ethos.bl.uk-541941
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-5419412017-12-24T15:14:51ZModelling of friction stir weldingColegrove, Paul Andrew2004This thesis investigates the modelling of friction stir welding (FSW). FSW is a relatively new welding process where a rotating non-consumable tool is used to join two materials through high temperature deformation. The aim of the thesis is the development of a numerical model to improve process understanding and to assist in the design of new tools. The early part of the thesis describes the process, defines the modelling problem and describes why a computational fluid dynamics package (FLUENT) was selected for the subsequent work. A systematic series of friction stir welding experiments in 7075 aluminium alloy, used to provide validation data for a numerical model of the process, are described in chapter 2. The trials examined how the welding conditions and tool type affected the weld temperature and heat input. From this data a thermal model of the welds was developed that included the convective heat flow due to material mixing. Chapters 3 to 6 describe the model development, from a preliminary model of a standard tool, to a detailed analysis of 2 dimensional profiles incorporating a novel slip boundary condition, and finally to a full 3 dimensional model of a new tool design, including material slip. The preliminary model with a standard tool assumed that the material stuck to the tool surface and included features such as the tool tilt, heat generation and heat flow. The model captured many of the real process characteristics, but gave poor predictions of the welding forces and heat generation. This identified the need for a more complex treatment of the tool-material interface that allowed material slip. The slip model was first implemented in a 2 dimensional study of flow around profiled tooling (chapter 4). This enabled a first order visualisation of the flow and the quantitative comparison of different 2 dimensional pin profiles. In chapter 5 an optimised 2 dimensional pin profile was determined by selecting the shape that minimised the traversing force. Two prototype tools based on this profile were manufactured: the plain 'Trivex™' and the threaded 'MX-Trivex™'. These were tested against a conventional 'MX-Triflute™' tool with the results showing that the traversing force was reduced by 18-25%. Chapter 6 describes 3 dimensional models of the 'Trivex™' and 'Triflute™' tools, which extended the slip model to 3 dimensions. The model correctly predicted that the Trivex™ tool had lower traversing and down forces than its Triflute™ counterpart, as observed experimentally. The thesis successfully demonstrates the application of fluid dynamics modelling to friction stir welding, enhancing visualisation of the flow, and guiding the development of new tooling.671University of Cambridge10.17863/CAM.14008http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.541941https://www.repository.cam.ac.uk/handle/1810/240576Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 671
spellingShingle 671
Colegrove, Paul Andrew
Modelling of friction stir welding
description This thesis investigates the modelling of friction stir welding (FSW). FSW is a relatively new welding process where a rotating non-consumable tool is used to join two materials through high temperature deformation. The aim of the thesis is the development of a numerical model to improve process understanding and to assist in the design of new tools. The early part of the thesis describes the process, defines the modelling problem and describes why a computational fluid dynamics package (FLUENT) was selected for the subsequent work. A systematic series of friction stir welding experiments in 7075 aluminium alloy, used to provide validation data for a numerical model of the process, are described in chapter 2. The trials examined how the welding conditions and tool type affected the weld temperature and heat input. From this data a thermal model of the welds was developed that included the convective heat flow due to material mixing. Chapters 3 to 6 describe the model development, from a preliminary model of a standard tool, to a detailed analysis of 2 dimensional profiles incorporating a novel slip boundary condition, and finally to a full 3 dimensional model of a new tool design, including material slip. The preliminary model with a standard tool assumed that the material stuck to the tool surface and included features such as the tool tilt, heat generation and heat flow. The model captured many of the real process characteristics, but gave poor predictions of the welding forces and heat generation. This identified the need for a more complex treatment of the tool-material interface that allowed material slip. The slip model was first implemented in a 2 dimensional study of flow around profiled tooling (chapter 4). This enabled a first order visualisation of the flow and the quantitative comparison of different 2 dimensional pin profiles. In chapter 5 an optimised 2 dimensional pin profile was determined by selecting the shape that minimised the traversing force. Two prototype tools based on this profile were manufactured: the plain 'Trivex™' and the threaded 'MX-Trivex™'. These were tested against a conventional 'MX-Triflute™' tool with the results showing that the traversing force was reduced by 18-25%. Chapter 6 describes 3 dimensional models of the 'Trivex™' and 'Triflute™' tools, which extended the slip model to 3 dimensions. The model correctly predicted that the Trivex™ tool had lower traversing and down forces than its Triflute™ counterpart, as observed experimentally. The thesis successfully demonstrates the application of fluid dynamics modelling to friction stir welding, enhancing visualisation of the flow, and guiding the development of new tooling.
author Colegrove, Paul Andrew
author_facet Colegrove, Paul Andrew
author_sort Colegrove, Paul Andrew
title Modelling of friction stir welding
title_short Modelling of friction stir welding
title_full Modelling of friction stir welding
title_fullStr Modelling of friction stir welding
title_full_unstemmed Modelling of friction stir welding
title_sort modelling of friction stir welding
publisher University of Cambridge
publishDate 2004
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.541941
work_keys_str_mv AT colegrovepaulandrew modellingoffrictionstirwelding
_version_ 1718566659425304576