Summary: | The thermodynamic properties of chloride, nitrate and nitrite AFm hydrates have been determined. Investigations of solid solutions and thermodynamic calculations on the influence of these anions on mineralogical changes in cement paste were performed and compared with experiments. To calculate volume changes, densities of principal crystalline phases occurring in cement were critically assessed and tabulated, in some cases with addition of new data. Database was obtained by calculating densities from crystallographic data and unit cell contents. In hydrated cements, anion sites in AFm phase are potentially occupied by OH, SO<sub>4</sub> and CO<sub>3</sub> ions. C1, NO<sub>3</sub> or NO<sub>2</sub> ions readily displace hydroxide, sulfate and carbonate in the AFm structures. Nitrates and nitrites do not have ability to displace chloride from the Friedel’s salt (C1-AFm) though. The binding power of AFm for nitrite/nitrate/chloride was calculated and confirmed experimentally at 25°C. It was observed that presence of chloride, nitrate or nitrite alters the AFm/Aft balance and thereby affect the specific volume of paste solids. It was found that the success of nitrite as a corrosion inhibitor for protection of embedded steel arises from its “smart” behaviour. AFm normally stores and sequesters nitrite. If chloride ingress occurs in service, the AFm undergoes ion exchange, gaining chloride and forming Friedel’s salt, while releasing soluble nitrite ions to the pore fluid. As a result, the aqueous ratio of [NO<sub>2</sub><sup>-</sup>]/[C1<sup>-</sup>] increases and remains within the passivation range for steel.
|