The impact of manufacturing flexibility on system performance : a simulation based approach
Manufacturing systems face now more than ever the effects of an uncertain environment, which is triggered by constantly changing customer needs. Numerous approaches have been proposed to provide manufacturing systems with the capability to satisfactorily perform under situations of uncertainty, part...
Main Author: | |
---|---|
Published: |
University of Nottingham
2010
|
Subjects: | |
Online Access: | http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527748 |
id |
ndltd-bl.uk-oai-ethos.bl.uk-527748 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-bl.uk-oai-ethos.bl.uk-5277482015-03-20T03:20:18ZThe impact of manufacturing flexibility on system performance : a simulation based approachGomez Valdez, Carlos Rafael2010Manufacturing systems face now more than ever the effects of an uncertain environment, which is triggered by constantly changing customer needs. Numerous approaches have been proposed to provide manufacturing systems with the capability to satisfactorily perform under situations of uncertainty, particularly by improving their level of responsiveness. Manufacturing flexibility is a dimension of responsiveness which aims at reacting to unpredictable events with little penalty on performance. Nonetheless, there is a strong perception that the achievement of manufacturing flexibility exclusively depends on the availability of highly automated equipment. This is a misleading belief considering that manufacturing systems are a collection of interacting components sharing a common objective and therefore there must be alternative system’s aspects, other than automation, contributing to the achievement of manufacturing flexibility. This study expands on existing knowledge by exploring the concept of manufacturing flexibility through the investigation of the dimension of uniformity. The analysis of this dimension has provided a valuable perspective from which to improve understanding of flexibility in manufacturing and identify alternative ways to achieve it. By combining the analytical capabilities of discrete event simulation, statistical design of experiments and optimisation, it has been possible to identify specific factors, optimal system configurations and response trade-offs that, within the context of semi-automated cellular manufacturing systems, constitute a significant contribution in the attainment of manufacturing flexibility.338.0068TS ManufacturesUniversity of Nottinghamhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527748http://eprints.nottingham.ac.uk/11795/Electronic Thesis or Dissertation |
collection |
NDLTD |
sources |
NDLTD |
topic |
338.0068 TS Manufactures |
spellingShingle |
338.0068 TS Manufactures Gomez Valdez, Carlos Rafael The impact of manufacturing flexibility on system performance : a simulation based approach |
description |
Manufacturing systems face now more than ever the effects of an uncertain environment, which is triggered by constantly changing customer needs. Numerous approaches have been proposed to provide manufacturing systems with the capability to satisfactorily perform under situations of uncertainty, particularly by improving their level of responsiveness. Manufacturing flexibility is a dimension of responsiveness which aims at reacting to unpredictable events with little penalty on performance. Nonetheless, there is a strong perception that the achievement of manufacturing flexibility exclusively depends on the availability of highly automated equipment. This is a misleading belief considering that manufacturing systems are a collection of interacting components sharing a common objective and therefore there must be alternative system’s aspects, other than automation, contributing to the achievement of manufacturing flexibility. This study expands on existing knowledge by exploring the concept of manufacturing flexibility through the investigation of the dimension of uniformity. The analysis of this dimension has provided a valuable perspective from which to improve understanding of flexibility in manufacturing and identify alternative ways to achieve it. By combining the analytical capabilities of discrete event simulation, statistical design of experiments and optimisation, it has been possible to identify specific factors, optimal system configurations and response trade-offs that, within the context of semi-automated cellular manufacturing systems, constitute a significant contribution in the attainment of manufacturing flexibility. |
author |
Gomez Valdez, Carlos Rafael |
author_facet |
Gomez Valdez, Carlos Rafael |
author_sort |
Gomez Valdez, Carlos Rafael |
title |
The impact of manufacturing flexibility on system performance : a simulation based approach |
title_short |
The impact of manufacturing flexibility on system performance : a simulation based approach |
title_full |
The impact of manufacturing flexibility on system performance : a simulation based approach |
title_fullStr |
The impact of manufacturing flexibility on system performance : a simulation based approach |
title_full_unstemmed |
The impact of manufacturing flexibility on system performance : a simulation based approach |
title_sort |
impact of manufacturing flexibility on system performance : a simulation based approach |
publisher |
University of Nottingham |
publishDate |
2010 |
url |
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527748 |
work_keys_str_mv |
AT gomezvaldezcarlosrafael theimpactofmanufacturingflexibilityonsystemperformanceasimulationbasedapproach AT gomezvaldezcarlosrafael impactofmanufacturingflexibilityonsystemperformanceasimulationbasedapproach |
_version_ |
1716780128546062336 |