Low temperature formation of ferric arsenate

The safe disposal of arsenic (As) is important for the metal extraction industry worldwide. Previous work has shown that crystalline ferric arsenate (FeAsO4·2H2O), which is the synthetic version of the natural mineral scorodite, fulfils most of the criteria for safe disposal. Presently, this require...

Full description

Bibliographic Details
Main Author: Lewis, Robert Alec
Other Authors: Plant, Jane ; Monhemius, John
Published: Imperial College London 2009
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.519253
id ndltd-bl.uk-oai-ethos.bl.uk-519253
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-5192532017-08-30T03:15:52ZLow temperature formation of ferric arsenateLewis, Robert AlecPlant, Jane ; Monhemius, John2009The safe disposal of arsenic (As) is important for the metal extraction industry worldwide. Previous work has shown that crystalline ferric arsenate (FeAsO4·2H2O), which is the synthetic version of the natural mineral scorodite, fulfils most of the criteria for safe disposal. Presently, this requires the use of expensive pressurised equipment in industrial applications. There is increasing evidence that microorganisms play an important part in the geochemical cycle of As. In environmental samples, bacteria are often closely associated with mineral precipitates, as well as in bioleaching samples. Strains of acidophilic bacteria (Acidithiobacillus spp., Leptospirillum spp., Sulfobacillus spp. and Thiomonas spp.) have been enriched and isolated in liquid and on solid media from rock samples from former mine sites in the Czech Republic and the UK, and experiments carried out to determine whether the bacteria can catalyse the formation of ferric arsenate. Crystalline ferric arsenate has been identified in material precipitated by an environmental strain of Acidithiobacillus spp. in liquid media within 150 h-1 at 35°C and pH 3.0. Acidithiobacillus spp. also precipitated poorly crystalline ferric arsenate at pH 2.4 25°C. An environmental strain of Leptospirillum spp. also showed slightly crystalline scorodite at pH 1.5 25° and at pH 3.0 35°C. There is no evidence that the selected bacteria can precipitate ferric arsenates on solid media, however, despite varying concentrations of As added as As3+ or As5+. Material formed has been x-ray amorphous due to rapid formation, and FTIR analyses have shown no increase in crystallinity with age over the months in which the precipitates have been studied.551.9Imperial College Londonhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.519253http://hdl.handle.net/10044/1/5686Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 551.9
spellingShingle 551.9
Lewis, Robert Alec
Low temperature formation of ferric arsenate
description The safe disposal of arsenic (As) is important for the metal extraction industry worldwide. Previous work has shown that crystalline ferric arsenate (FeAsO4·2H2O), which is the synthetic version of the natural mineral scorodite, fulfils most of the criteria for safe disposal. Presently, this requires the use of expensive pressurised equipment in industrial applications. There is increasing evidence that microorganisms play an important part in the geochemical cycle of As. In environmental samples, bacteria are often closely associated with mineral precipitates, as well as in bioleaching samples. Strains of acidophilic bacteria (Acidithiobacillus spp., Leptospirillum spp., Sulfobacillus spp. and Thiomonas spp.) have been enriched and isolated in liquid and on solid media from rock samples from former mine sites in the Czech Republic and the UK, and experiments carried out to determine whether the bacteria can catalyse the formation of ferric arsenate. Crystalline ferric arsenate has been identified in material precipitated by an environmental strain of Acidithiobacillus spp. in liquid media within 150 h-1 at 35°C and pH 3.0. Acidithiobacillus spp. also precipitated poorly crystalline ferric arsenate at pH 2.4 25°C. An environmental strain of Leptospirillum spp. also showed slightly crystalline scorodite at pH 1.5 25° and at pH 3.0 35°C. There is no evidence that the selected bacteria can precipitate ferric arsenates on solid media, however, despite varying concentrations of As added as As3+ or As5+. Material formed has been x-ray amorphous due to rapid formation, and FTIR analyses have shown no increase in crystallinity with age over the months in which the precipitates have been studied.
author2 Plant, Jane ; Monhemius, John
author_facet Plant, Jane ; Monhemius, John
Lewis, Robert Alec
author Lewis, Robert Alec
author_sort Lewis, Robert Alec
title Low temperature formation of ferric arsenate
title_short Low temperature formation of ferric arsenate
title_full Low temperature formation of ferric arsenate
title_fullStr Low temperature formation of ferric arsenate
title_full_unstemmed Low temperature formation of ferric arsenate
title_sort low temperature formation of ferric arsenate
publisher Imperial College London
publishDate 2009
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.519253
work_keys_str_mv AT lewisrobertalec lowtemperatureformationofferricarsenate
_version_ 1718520859147108352