Transiting exoplanets : characterisation in the presence of stellar activity

The combined observations of a planet’s transits and the radial velocity variations of its host star allow the determination of the planet’s orbital parameters, and most inter- estingly of its radius and mass, and hence its mean density. Observed densities provide important constraints to planet str...

Full description

Bibliographic Details
Main Author: Alapini Odunlade, Aude Ekundayo Pauline
Other Authors: Aigrain, Suzanne : Naylor, Tim
Published: University of Exeter 2010
Subjects:
520
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518045
id ndltd-bl.uk-oai-ethos.bl.uk-518045
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-5180452015-03-20T04:04:08ZTransiting exoplanets : characterisation in the presence of stellar activityAlapini Odunlade, Aude Ekundayo PaulineAigrain, Suzanne : Naylor, Tim2010The combined observations of a planet’s transits and the radial velocity variations of its host star allow the determination of the planet’s orbital parameters, and most inter- estingly of its radius and mass, and hence its mean density. Observed densities provide important constraints to planet structure and evolution models. The uncertainties on the parameters of large exoplanets mainly arise from those on stellar masses and radii. For small exoplanets, the treatment of stellar variability limits the accuracy on the de- rived parameters. The goal of this PhD thesis was to reduce these sources of uncertainty by developing new techniques for stellar variability filtering and for the determination of stellar temperatures, and by robustly fitting the transits taking into account external constraints on the planet’s host star. To this end, I developed the Iterative Reconstruction Filter (IRF), a new post-detection stellar variability filter. By exploiting the prior knowledge of the planet’s orbital period, it simultaneously estimates the transit signal and the stellar variability signal, using a com- bination of moving average and median filters. The IRF was tested on simulated CoRoT light curves, where it significantly improved the estimate of the transit signal, particu- lary in the case of light curves with strong stellar variability. It was then applied to the light curves of the first seven planets discovered by CoRoT, a space mission designed to search for planetary transits, to obtain refined estimates of their parameters. As the IRF preserves all signal at the planet’s orbital period, t can also be used to search for secondary eclipses and orbital phase variations for the most promising cases. This en- abled the detection of the secondary eclipses of CoRoT-1b and CoRoT-2b in the white (300–1000 nm) CoRoT bandpass, as well as a marginal detection of CoRoT-1b’s orbital phase variations. The wide optical bandpass of CoRoT limits the distinction between thermal emission and reflected light contributions to the secondary eclipse. I developed a method to derive precise stellar relative temperatures using equiv- alent width ratios and applied it to the host stars of the first eight CoRoT planets. For stars with temperature within the calibrated range, the derived temperatures are con- sistent with the literature, but have smaller formal uncertainties. I then used a Markov Chain Monte Carlo technique to explore the correlations between planet parameters derived from transits, and the impact of external constraints (e.g. the spectroscopically derived stellar temperature, which is linked to the stellar density). Globally, this PhD thesis highlights, and in part addresses, the complexity of perform- ing detailed characterisation of transit light curves. Many low amplitude effects must be taken into account: residual stellar activity and systematics, stellar limb darkening, and the interplay of all available constraints on transit fitting. Several promising areas for further improvements and applications were identified. Current and future high precision photometry missions will discover increasing numbers of small planets around relatively active stars, and the IRF is expected to be useful in characterising them.520Extrasolar planet : Stellar activity : Photometric time-series : Stellar spectra : Transit method : Markov Chain Monte Carlo : Planet occultation : Planet orbital phase variations : Iterative Reconstruction FilterUniversity of Exeterhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518045http://hdl.handle.net/10036/104834Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 520
Extrasolar planet : Stellar activity : Photometric time-series : Stellar spectra : Transit method : Markov Chain Monte Carlo : Planet occultation : Planet orbital phase variations : Iterative Reconstruction Filter
spellingShingle 520
Extrasolar planet : Stellar activity : Photometric time-series : Stellar spectra : Transit method : Markov Chain Monte Carlo : Planet occultation : Planet orbital phase variations : Iterative Reconstruction Filter
Alapini Odunlade, Aude Ekundayo Pauline
Transiting exoplanets : characterisation in the presence of stellar activity
description The combined observations of a planet’s transits and the radial velocity variations of its host star allow the determination of the planet’s orbital parameters, and most inter- estingly of its radius and mass, and hence its mean density. Observed densities provide important constraints to planet structure and evolution models. The uncertainties on the parameters of large exoplanets mainly arise from those on stellar masses and radii. For small exoplanets, the treatment of stellar variability limits the accuracy on the de- rived parameters. The goal of this PhD thesis was to reduce these sources of uncertainty by developing new techniques for stellar variability filtering and for the determination of stellar temperatures, and by robustly fitting the transits taking into account external constraints on the planet’s host star. To this end, I developed the Iterative Reconstruction Filter (IRF), a new post-detection stellar variability filter. By exploiting the prior knowledge of the planet’s orbital period, it simultaneously estimates the transit signal and the stellar variability signal, using a com- bination of moving average and median filters. The IRF was tested on simulated CoRoT light curves, where it significantly improved the estimate of the transit signal, particu- lary in the case of light curves with strong stellar variability. It was then applied to the light curves of the first seven planets discovered by CoRoT, a space mission designed to search for planetary transits, to obtain refined estimates of their parameters. As the IRF preserves all signal at the planet’s orbital period, t can also be used to search for secondary eclipses and orbital phase variations for the most promising cases. This en- abled the detection of the secondary eclipses of CoRoT-1b and CoRoT-2b in the white (300–1000 nm) CoRoT bandpass, as well as a marginal detection of CoRoT-1b’s orbital phase variations. The wide optical bandpass of CoRoT limits the distinction between thermal emission and reflected light contributions to the secondary eclipse. I developed a method to derive precise stellar relative temperatures using equiv- alent width ratios and applied it to the host stars of the first eight CoRoT planets. For stars with temperature within the calibrated range, the derived temperatures are con- sistent with the literature, but have smaller formal uncertainties. I then used a Markov Chain Monte Carlo technique to explore the correlations between planet parameters derived from transits, and the impact of external constraints (e.g. the spectroscopically derived stellar temperature, which is linked to the stellar density). Globally, this PhD thesis highlights, and in part addresses, the complexity of perform- ing detailed characterisation of transit light curves. Many low amplitude effects must be taken into account: residual stellar activity and systematics, stellar limb darkening, and the interplay of all available constraints on transit fitting. Several promising areas for further improvements and applications were identified. Current and future high precision photometry missions will discover increasing numbers of small planets around relatively active stars, and the IRF is expected to be useful in characterising them.
author2 Aigrain, Suzanne : Naylor, Tim
author_facet Aigrain, Suzanne : Naylor, Tim
Alapini Odunlade, Aude Ekundayo Pauline
author Alapini Odunlade, Aude Ekundayo Pauline
author_sort Alapini Odunlade, Aude Ekundayo Pauline
title Transiting exoplanets : characterisation in the presence of stellar activity
title_short Transiting exoplanets : characterisation in the presence of stellar activity
title_full Transiting exoplanets : characterisation in the presence of stellar activity
title_fullStr Transiting exoplanets : characterisation in the presence of stellar activity
title_full_unstemmed Transiting exoplanets : characterisation in the presence of stellar activity
title_sort transiting exoplanets : characterisation in the presence of stellar activity
publisher University of Exeter
publishDate 2010
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518045
work_keys_str_mv AT alapiniodunladeaudeekundayopauline transitingexoplanetscharacterisationinthepresenceofstellaractivity
_version_ 1716783609806848000