Nonlinear analysis and control of chemical reactors

This thesis carries out a detailed study of a nonlinear spectral theory that is useful for modeling and controlling chemical reactors. The motivation for this work originates from a few reports which have demonstrated in the past that the nonlinear spectral method offers a useful mathematical framew...

Full description

Bibliographic Details
Main Author: Samardzjia, Nikola
Other Authors: McGreavy, C. ; Ray, W. H.
Published: University of Leeds 1997
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.514027
id ndltd-bl.uk-oai-ethos.bl.uk-514027
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-5140272017-10-04T03:31:09ZNonlinear analysis and control of chemical reactorsSamardzjia, NikolaMcGreavy, C. ; Ray, W. H.1997This thesis carries out a detailed study of a nonlinear spectral theory that is useful for modeling and controlling chemical reactors. The motivation for this work originates from a few reports which have demonstrated in the past that the nonlinear spectral method offers a useful mathematical framework for classifying and quantifying nonlinear complexities of large degrees of freedom, as well as for qualifying a general nonlinear dynamic behavior. We present and discuss this new theory and show that it extends the familiar linear systems notion of characteristic modes (eigenmodes), as well as the notions of mathematical quantities known as the eigenvectors, and eigenvalues, into a multi-dimensional nonlinear domain, i. e., applies to model dimensions one, two, three and higher. This approach offers a new insight into nonlinear phenomena, and as such has a significant theoretical and practical value. In the theory of nonlinear systems the spectral framework provides some useful answers regarding the issues of multivariate process complexity, stability and control. Similarly, in applications it often leads to a simple relation between a desired process behavior and control parameters. We demonstrate this by showing how a process operating point, its behavior, and its domain of attraction are determined by nonlinear structures which characterize both a process and its control realization. In addition, we show that by a correctly modeling and regulating process nonlinearities one can obtain a nonlinear control solution that often outperforms the conventional first-order realizations. That is, there exist important nonlinear structural and dynamic process relations which determine a feasibility of a control realization. This is demonstrated by studying control behaviors of several highly exothermic continuously stirred tank reactor processes.660.2832University of Leedshttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.514027http://etheses.whiterose.ac.uk/728/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 660.2832
spellingShingle 660.2832
Samardzjia, Nikola
Nonlinear analysis and control of chemical reactors
description This thesis carries out a detailed study of a nonlinear spectral theory that is useful for modeling and controlling chemical reactors. The motivation for this work originates from a few reports which have demonstrated in the past that the nonlinear spectral method offers a useful mathematical framework for classifying and quantifying nonlinear complexities of large degrees of freedom, as well as for qualifying a general nonlinear dynamic behavior. We present and discuss this new theory and show that it extends the familiar linear systems notion of characteristic modes (eigenmodes), as well as the notions of mathematical quantities known as the eigenvectors, and eigenvalues, into a multi-dimensional nonlinear domain, i. e., applies to model dimensions one, two, three and higher. This approach offers a new insight into nonlinear phenomena, and as such has a significant theoretical and practical value. In the theory of nonlinear systems the spectral framework provides some useful answers regarding the issues of multivariate process complexity, stability and control. Similarly, in applications it often leads to a simple relation between a desired process behavior and control parameters. We demonstrate this by showing how a process operating point, its behavior, and its domain of attraction are determined by nonlinear structures which characterize both a process and its control realization. In addition, we show that by a correctly modeling and regulating process nonlinearities one can obtain a nonlinear control solution that often outperforms the conventional first-order realizations. That is, there exist important nonlinear structural and dynamic process relations which determine a feasibility of a control realization. This is demonstrated by studying control behaviors of several highly exothermic continuously stirred tank reactor processes.
author2 McGreavy, C. ; Ray, W. H.
author_facet McGreavy, C. ; Ray, W. H.
Samardzjia, Nikola
author Samardzjia, Nikola
author_sort Samardzjia, Nikola
title Nonlinear analysis and control of chemical reactors
title_short Nonlinear analysis and control of chemical reactors
title_full Nonlinear analysis and control of chemical reactors
title_fullStr Nonlinear analysis and control of chemical reactors
title_full_unstemmed Nonlinear analysis and control of chemical reactors
title_sort nonlinear analysis and control of chemical reactors
publisher University of Leeds
publishDate 1997
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.514027
work_keys_str_mv AT samardzjianikola nonlinearanalysisandcontrolofchemicalreactors
_version_ 1718544632205279232