Fluid interactions with carbon nanotubes

Using a purpose built molecular dynamics (MD) code. we simulate a range of infinite and finite length H-terminated carbon nanotubes in vacuo. We find that the radial breathing mode (RBM) of the finite nanotubes approaches that of the infinite nanotubes for nanotubes greater than 5 nm in length. We i...

Full description

Bibliographic Details
Main Author: Longhurst, Matthew James
Published: Imperial College London 2007
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486910
id ndltd-bl.uk-oai-ethos.bl.uk-486910
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-4869102015-03-20T06:17:39ZFluid interactions with carbon nanotubesLonghurst, Matthew James2007Using a purpose built molecular dynamics (MD) code. we simulate a range of infinite and finite length H-terminated carbon nanotubes in vacuo. We find that the radial breathing mode (RBM) of the finite nanotubes approaches that of the infinite nanotubes for nanotubes greater than 5 nm in length. We investigate the effect on the RBM frequency' of immersion in water and find that external wetting is responsible for an upshift in the RBM of around 4-10 wave numbers. and internal wetting approximately 2-6 wave numbers. The upshift is comprised of two components: increased hydrostatic pressure on the nanotube due to curvature effects. and the dynamic coupling of the RBM with a shell of adsorbed fluid: In contrast to much of the current literature, we find that the latter of the two effects . is dominant. The upshift can be modelled analytically by considering the adsorbed fluid as an infinitesimally thin shell which interacts with the nanotube via-a continuum Lennard-Jones potential. Using MD, the RBM of carbon nanotubes in fluids can be accurately reproduced by replacing the fluid molecules with a mean field harmonic shell potential. greatly reducing simulation times. The pressure dependence of shifts in the vibrational modes of individual carbon nanotubes is strongly affected by the nature of the pressure transmitting medium as a result of adsorption at the nanotube sUrfade. Using analytical methods, as well as MD, we observe an as yet unreported low frequency breathing mode for the adsorbed fluid at around 50 cm-1 , as well as diameterdependent upshifts in the RBM frequency with pressure, suggesting metallic nanotubes may wet more than semiconducting ones. Finally. we describe a methodology for the continuous pumping of fluid through carbon nanotubes. Fluid is imbibed from a reservoir at 300 K. heated. and subsequently ejected from the hot end. Very high pressures are developed in the smaller nanotubes due to strong capillary forces, suggesting thAir use as nanoscale reaction vessels. A theoretical framework is developed allowing us to predict pumping fluxes over a range of nanotube diameters and temperatures.620.106Imperial College Londonhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486910Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 620.106
spellingShingle 620.106
Longhurst, Matthew James
Fluid interactions with carbon nanotubes
description Using a purpose built molecular dynamics (MD) code. we simulate a range of infinite and finite length H-terminated carbon nanotubes in vacuo. We find that the radial breathing mode (RBM) of the finite nanotubes approaches that of the infinite nanotubes for nanotubes greater than 5 nm in length. We investigate the effect on the RBM frequency' of immersion in water and find that external wetting is responsible for an upshift in the RBM of around 4-10 wave numbers. and internal wetting approximately 2-6 wave numbers. The upshift is comprised of two components: increased hydrostatic pressure on the nanotube due to curvature effects. and the dynamic coupling of the RBM with a shell of adsorbed fluid: In contrast to much of the current literature, we find that the latter of the two effects . is dominant. The upshift can be modelled analytically by considering the adsorbed fluid as an infinitesimally thin shell which interacts with the nanotube via-a continuum Lennard-Jones potential. Using MD, the RBM of carbon nanotubes in fluids can be accurately reproduced by replacing the fluid molecules with a mean field harmonic shell potential. greatly reducing simulation times. The pressure dependence of shifts in the vibrational modes of individual carbon nanotubes is strongly affected by the nature of the pressure transmitting medium as a result of adsorption at the nanotube sUrfade. Using analytical methods, as well as MD, we observe an as yet unreported low frequency breathing mode for the adsorbed fluid at around 50 cm-1 , as well as diameterdependent upshifts in the RBM frequency with pressure, suggesting metallic nanotubes may wet more than semiconducting ones. Finally. we describe a methodology for the continuous pumping of fluid through carbon nanotubes. Fluid is imbibed from a reservoir at 300 K. heated. and subsequently ejected from the hot end. Very high pressures are developed in the smaller nanotubes due to strong capillary forces, suggesting thAir use as nanoscale reaction vessels. A theoretical framework is developed allowing us to predict pumping fluxes over a range of nanotube diameters and temperatures.
author Longhurst, Matthew James
author_facet Longhurst, Matthew James
author_sort Longhurst, Matthew James
title Fluid interactions with carbon nanotubes
title_short Fluid interactions with carbon nanotubes
title_full Fluid interactions with carbon nanotubes
title_fullStr Fluid interactions with carbon nanotubes
title_full_unstemmed Fluid interactions with carbon nanotubes
title_sort fluid interactions with carbon nanotubes
publisher Imperial College London
publishDate 2007
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486910
work_keys_str_mv AT longhurstmatthewjames fluidinteractionswithcarbonnanotubes
_version_ 1716795956620427264