Bayesian inference using Monte Carlo Markov Chain for parameter optimisation in Soil Water Assessment Tool (SWAT)
Main Author: | |
---|---|
Published: |
Heriot-Watt University
2006
|
Subjects: | |
Online Access: | http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444717 |
id |
ndltd-bl.uk-oai-ethos.bl.uk-444717 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-bl.uk-oai-ethos.bl.uk-4447172015-03-19T04:08:25ZBayesian inference using Monte Carlo Markov Chain for parameter optimisation in Soil Water Assessment Tool (SWAT)Koh, Reggie2006631.4320151Heriot-Watt Universityhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444717http://hdl.handle.net/10399/104Electronic Thesis or Dissertation |
collection |
NDLTD |
sources |
NDLTD |
topic |
631.4320151 |
spellingShingle |
631.4320151 Koh, Reggie Bayesian inference using Monte Carlo Markov Chain for parameter optimisation in Soil Water Assessment Tool (SWAT) |
author |
Koh, Reggie |
author_facet |
Koh, Reggie |
author_sort |
Koh, Reggie |
title |
Bayesian inference using Monte Carlo Markov Chain for parameter optimisation in Soil Water Assessment Tool (SWAT) |
title_short |
Bayesian inference using Monte Carlo Markov Chain for parameter optimisation in Soil Water Assessment Tool (SWAT) |
title_full |
Bayesian inference using Monte Carlo Markov Chain for parameter optimisation in Soil Water Assessment Tool (SWAT) |
title_fullStr |
Bayesian inference using Monte Carlo Markov Chain for parameter optimisation in Soil Water Assessment Tool (SWAT) |
title_full_unstemmed |
Bayesian inference using Monte Carlo Markov Chain for parameter optimisation in Soil Water Assessment Tool (SWAT) |
title_sort |
bayesian inference using monte carlo markov chain for parameter optimisation in soil water assessment tool (swat) |
publisher |
Heriot-Watt University |
publishDate |
2006 |
url |
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444717 |
work_keys_str_mv |
AT kohreggie bayesianinferenceusingmontecarlomarkovchainforparameteroptimisationinsoilwaterassessmenttoolswat |
_version_ |
1716736094436851712 |