Model driven software modernisation

Constant innovation of information technology and ever-changing market requirements relegate more and more existing software to legacy status. Generating software through reusing legacy systems has been a primary solution and software re-engineering has the potential to improve software productivity...

Full description

Bibliographic Details
Main Author: Chen, Feng
Published: De Montfort University 2007
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438878
Description
Summary:Constant innovation of information technology and ever-changing market requirements relegate more and more existing software to legacy status. Generating software through reusing legacy systems has been a primary solution and software re-engineering has the potential to improve software productivity and quality across the entire software life cycle. The classical re-engineering technology starts at the level of program source code which is the most or only reliable information on a legacy system. The program specification derived from legacy source code will then facilitate the migration of legacy systems in the subsequent forward engineering steps. A recent research trend in re-engineering area carries this idea further and moves into model driven perspective that the specification is presented with models. The thesis focuses on engaging model technology to modernise legacy systems. A unified approach, REMOST (Re-Engineering through MOdel conStruction and Transformation), is proposed in the context of Model Driven Architecture (MDA). The theoretical foundation is the construction of a WSL-based Modelling Language, known as WML, which is an extension of WSL (Wide Spectrum Language). WML is defined to provide a spectrum of models for the system re-engineering, including Common Modelling Language (CML), Architecture Description Language (ADL) and Domain Specific Modelling Language (DSML). 9rtetaWML is designed for model transformation, providing query facilities, action primitives and metrics functions. A set of transformation rules are defined in 9rtetaWML to conduct system abstraction and refactoring. Model transformation for unifying WML and UML is also provided, which can bridge the legacy systems to MDA. The architecture and working flow of the REMOST approach are proposed and a prototype tool environment is developed for testing the approach. A number of case studies are used for experiments with the approach and the prototype tool, which show that the proposed approach is feasible and promising in its domain. Conclusion is drawn based on analysis and further research directions are also discussed.