Endothelial cell apoptosis

Endothelial cell apoptosis is an important process during vasculature remodelling, angiogenesis and inflammation. Medical interest in endothelial cell apoptosis as a target for arthritis and solid tumour treatment has prompted biochemical and pharmacological investigation into the mechanisms control...

Full description

Bibliographic Details
Main Author: Churchman, Adrian Thomas
Published: University of Hertfordshire 2005
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427544
id ndltd-bl.uk-oai-ethos.bl.uk-427544
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-4275442015-03-19T04:43:54ZEndothelial cell apoptosisChurchman, Adrian Thomas2005Endothelial cell apoptosis is an important process during vasculature remodelling, angiogenesis and inflammation. Medical interest in endothelial cell apoptosis as a target for arthritis and solid tumour treatment has prompted biochemical and pharmacological investigation into the mechanisms controlling endothelial cell survival and angiogenesis. In recent years it has been hypothesised that control of endothelial cell apoptosis and the induction of angiogenesis may in part be due to the enzyme cyclooxygenase (COX)-2. COX-2 is involved in the metabolism of arachidonic acid to prostaglandins in mammals. This pathway has been implicated in controlling inflammation and angiogenesis through prostaglandin (PG) production and more recently has been shown to inhibit endothelial cell death. It was the aim of this study to investigate endothelial cell apoptosis and angiogenesis focussing on the role of COX-2, prostaglandins and endogenous apoptotic inhibitors in these pathways. Endothelial cell apoptosis was assessed by chromatin condensation, DNA fragmentation and caspase activation. Angiogenesis was investigated by examining capillary-like tubule formation. Endothelial cell apoptosis induction and angiogenesis inhibition was observed using the selective COX-2 inhibitor 5-bromo-2-(4-fluorophenyl)-3- (methylsulfonyl) thiophene (DuP-697) at a concentration 100 times lower than has previously been reported. Apoptosis was confirmed by induction of caspases 8, 9 and 3 over 8 hr and DNA fragmentation and condensation over 24 hr. The effects observed may be due to a selective inhibition of COX-2 as apoptosis induction and angiogenic inhibition only occurred when COX-2 was inhibited by selective and non-selective COX inhibitors. Induction of endothelial cell death was induced by treatment with two natural products that inhibit COX-2, namely curcumin and 6-shogaol (from turmeric and ginger respectively) although only at concentrations higher than were required to inhibit COX- 2. Both compounds induced chromatin condensation in endothelial cells and lurkat E6.1 cells with no DNA laddering or caspase induction. Further examination of the mechanisms of endothelial cell survival were investigated by assessing the endogenous expression of the apoptosis repressor with a caspase recognition domain (ARC) protein through examining reverse transcriptase CRT) - peR, native protein expression and transgenic over-expression in the endothelial cells. Endogenous expression of ARC was found in endothelial cells. However this expression declined during in vitro culture. Transgenic expression of ARC was found to increase levels of ARC in vitro. However it had no effect on apoptosis inhibition after 24 hr. The underlying mechanisms of cell death induction may be compound dependent in endothelial cells. Pharmacological inhibition of COX-2 and possibly PGE2 generation has detrimental effects on angiogenesis and endothelial cell survival. However inhibition of COX-2 by natural products at low concentrations may be advantageous in preventing tumour angiogenesis with no apoptosis induction.571.936University of Hertfordshirehttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427544http://hdl.handle.net/2299/14269Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 571.936
spellingShingle 571.936
Churchman, Adrian Thomas
Endothelial cell apoptosis
description Endothelial cell apoptosis is an important process during vasculature remodelling, angiogenesis and inflammation. Medical interest in endothelial cell apoptosis as a target for arthritis and solid tumour treatment has prompted biochemical and pharmacological investigation into the mechanisms controlling endothelial cell survival and angiogenesis. In recent years it has been hypothesised that control of endothelial cell apoptosis and the induction of angiogenesis may in part be due to the enzyme cyclooxygenase (COX)-2. COX-2 is involved in the metabolism of arachidonic acid to prostaglandins in mammals. This pathway has been implicated in controlling inflammation and angiogenesis through prostaglandin (PG) production and more recently has been shown to inhibit endothelial cell death. It was the aim of this study to investigate endothelial cell apoptosis and angiogenesis focussing on the role of COX-2, prostaglandins and endogenous apoptotic inhibitors in these pathways. Endothelial cell apoptosis was assessed by chromatin condensation, DNA fragmentation and caspase activation. Angiogenesis was investigated by examining capillary-like tubule formation. Endothelial cell apoptosis induction and angiogenesis inhibition was observed using the selective COX-2 inhibitor 5-bromo-2-(4-fluorophenyl)-3- (methylsulfonyl) thiophene (DuP-697) at a concentration 100 times lower than has previously been reported. Apoptosis was confirmed by induction of caspases 8, 9 and 3 over 8 hr and DNA fragmentation and condensation over 24 hr. The effects observed may be due to a selective inhibition of COX-2 as apoptosis induction and angiogenic inhibition only occurred when COX-2 was inhibited by selective and non-selective COX inhibitors. Induction of endothelial cell death was induced by treatment with two natural products that inhibit COX-2, namely curcumin and 6-shogaol (from turmeric and ginger respectively) although only at concentrations higher than were required to inhibit COX- 2. Both compounds induced chromatin condensation in endothelial cells and lurkat E6.1 cells with no DNA laddering or caspase induction. Further examination of the mechanisms of endothelial cell survival were investigated by assessing the endogenous expression of the apoptosis repressor with a caspase recognition domain (ARC) protein through examining reverse transcriptase CRT) - peR, native protein expression and transgenic over-expression in the endothelial cells. Endogenous expression of ARC was found in endothelial cells. However this expression declined during in vitro culture. Transgenic expression of ARC was found to increase levels of ARC in vitro. However it had no effect on apoptosis inhibition after 24 hr. The underlying mechanisms of cell death induction may be compound dependent in endothelial cells. Pharmacological inhibition of COX-2 and possibly PGE2 generation has detrimental effects on angiogenesis and endothelial cell survival. However inhibition of COX-2 by natural products at low concentrations may be advantageous in preventing tumour angiogenesis with no apoptosis induction.
author Churchman, Adrian Thomas
author_facet Churchman, Adrian Thomas
author_sort Churchman, Adrian Thomas
title Endothelial cell apoptosis
title_short Endothelial cell apoptosis
title_full Endothelial cell apoptosis
title_fullStr Endothelial cell apoptosis
title_full_unstemmed Endothelial cell apoptosis
title_sort endothelial cell apoptosis
publisher University of Hertfordshire
publishDate 2005
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427544
work_keys_str_mv AT churchmanadrianthomas endothelialcellapoptosis
_version_ 1716739244422070272