New routes to functionalised pyridines

A novel method of preparing substituted pyridines has been developed. This method uses readily available [3-ketoesters and amidrazone as starting materials. The pyridines obtained do not require purification and different substitution patterns, not available by known methods, can be obtained. The fo...

Full description

Bibliographic Details
Main Author: Altuna-Urquijo, M.
Other Authors: Stanforth, Stephen P.
Published: Northumbria University 2005
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426275
Description
Summary:A novel method of preparing substituted pyridines has been developed. This method uses readily available [3-ketoesters and amidrazone as starting materials. The pyridines obtained do not require purification and different substitution patterns, not available by known methods, can be obtained. The formation of 1,2,3-tricarbonyl compounds was achieved by oxidation of the alcohol precursors, following two different methods. a-Chloro-ct-acetoxy-f3-dicarbonyls were prepared in excellent yields and were shown to react as tricarbonyl equivalents in the formation of 1,2,4-triazines. Regioselective condensation reactions were observed between different amidrazones with tricarbonyl and tricarbonyl equivalents to produce a series of novel 1,2,4-triazines in good yields with no contamination by any regioisomer. When 1,2,4-triazines were obtained from a-chloro-a-acetoxy-P-dicarbonyls, 2.5 equivalents of amidrazone were required. However, decomposition of a-chloro-a-acetoxy-P-dicarbonyls prior to reaction with 1 equivalent of amidrazone yielded the 1,2,4-triazines in good yields. These 1,2,4-triazines underwent aza Diels-Alder cycloaddition reactions with 2,5- norbornadiene to give a series of novel 2,3,6-trisubstituted pyridines. The pyridines bearing electron withdrawing groups as substituents could also be obtained in a 'one- pot' reaction from their corresponding tricarbonyls or tricarbonyl derivatives. The 1,2,4- triazines bearing electron donating groups could be converted to their corresponding pyridines either by changing the reaction conditions or, when possible, by conversion of the electron donating group into a more electron withdrawing substituent by oxidation (e.g. sulphoxide substituent). Pyridines bearing a sulphoxide substituent undergo nucleophilic substitutions, giving great scope to introduce different functionality in the C-6 of the pyridines.